277
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructures and mechanical behaviour of bimetallic structures of tungsten alloy (90WNiFe) and nickel alloy (In625) fabricated by wire-arc directed energy deposition

, , , , &
Article: e2370957 | Received 24 Apr 2024, Accepted 15 Jun 2024, Published online: 15 Jul 2024

References

  • Bandyopadhyay A, Zhang Y, Onuike B. Additive manufacturing of bimetallic structures. Visual Phys Prototyp. 2022;17:256–294. DOI:10.1080/17452759.2022.2040738
  • Camacho AM, Rodríguez-Prieto A, Manuel Herrero J, et al. An experimental and numerical analysis of the compression of bimetallic cylinders. Materials. 2019;12:4094. DOI:10.3390/MA12244094
  • Li D, Liu Q, Wang W, et al. Corrosion behavior of AISI 316L stainless steel used as inner lining of bimetallic pipe in a seawater environment. Materials. 2021;14:1539. DOI:10.3390/MA14061539
  • Bose A, Schuh CA, Tobia JC, et al. Traditional and additive manufacturing of a new Tungsten heavy alloy alternative. Int J Refract Met Hard Mater. 2018;73:22–28. DOI:10.1016/J.IJRMHM.2018.01.019
  • Liu W, Ma Y, Zhang J. Properties and microstructural evolution of W-Ni-Fe alloy via microwave sintering. Int J Refract Met Hard Mater. 2012;35:138–142. DOI:10.1016/J.IJRMHM.2012.05.004
  • High Density Tungsten Alloy (WNiFe) Sheets, (n.d.) [cited 11 Sep 2023]. https://www.albmaterials.com/metals-and-alloys/743-high-density-tungsten-alloy-wnife-sheets.html.
  • Xiang DP, Ding L, Li YY, et al. Microstructure and mechanical properties of fine-grained W–7Ni–3Fe heavy alloy by spark plasma sintering. Mater Sci Eng A. 2012;551:95–99. DOI:10.1016/J.MSEA.2012.04.099
  • Dinda GP, Dasgupta AK, Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng A. 2009;509:98–104. DOI:10.1016/J.MSEA.2009.01.009
  • Kim K-S, Kang T-H, Kassner ME, et al. High-temperature tensile and high cycle fatigue properties of inconel 625 alloy manufactured by laser powder bed fusion. Addit Manuf. 2020;35:101377. DOI:10.1016/j.addma.2020.101377
  • Wang Z, Guan K, Gao M, et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J Alloys Compd. 2012;513:518–523. DOI:10.1016/J.JALLCOM.2011.10.107
  • Huebner J, Kata D, Kusiński J, et al. Microstructure of laser cladded carbide reinforced Inconel 625 alloy for turbine blade application. Ceram Int. 2017;43:8677–8684. DOI:10.1016/J.CERAMINT.2017.03.194
  • Ramkumar KD, Abraham WS, Viyash V, et al. Investigations on the microstructure, tensile strength and high temperature corrosion behaviour of Inconel 625 and Inconel 718 dissimilar joints. J Manuf Process. 2017;25:306–322. DOI:10.1016/J.JMAPRO.2016.12.018
  • Hosseini E, Popovich VA. A review of mechanical properties of additively manufactured Inconel 718. Addit Manuf. 2019;30:100877. DOI:10.1016/J.ADDMA.2019.100877
  • Ghanavati R, Naffakh-Moosavy H. Additive manufacturing of functionally graded metallic materials: a review of experimental and numerical studies. J Mater Res Technol. 2021;13:1628–1664. DOI:10.1016/j.jmrt.2021.05.022
  • Bandyopadhyay A, Heer B. Additive manufacturing of multi-material structures. Mater Sci Eng R Rep. 2018;129:1–16. DOI:10.1016/J.MSER.2018.04.001
  • Wang D, Liu L, Deng G, et al. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual Phys Prototyp. 2022;17:329–365. DOI:10.1080/17452759.2022.2028343
  • Jadhav S, Abdul Karim M, Bong Kim D. Bimetallic structure of TZM and NbZr1 fabricated by wire-based directed energy deposition. Mater Lett. 2024;356:135605. DOI:10.1016/J.MATLET.2023.135605
  • Jadhav S, Bajestani MS, Islam S, et al. Materials characterization of Ti6Al4 V to NbZr1 bimetallic structure fabricated by wire arc additive manufacturing. Mater Today Commun. 2023;36:106934. DOI:10.1016/J.MTCOMM.2023.106934
  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014;23:1917–1928. DOI:10.1007/s11665-014-0958-z
  • Bevans B, Ramalho A, Smoqi Z, et al. Monitoring and flaw detection during wire-based directed energy deposition using in-situ acoustic sensing and wavelet graph signal analysis. Mater Des. 2023;225:111480. DOI:10.1016/j.matdes.2022.111480
  • Felice IO, Shen J, Barragan AFC, et al. Wire and arc additive manufacturing of Fe-based shape memory alloys: microstructure, mechanical and functional behavior. Mater Des. 2023;231:112004. DOI:10.1016/j.matdes.2023.112004
  • Kushwaha AK, Rahman MH, Slater E, et al. Powder bed fusion–based additive manufacturing: SLS, SLM, SHS, and DMLS. Tribol Addit Manuf Mater Fundam Model Appl. 2022;1–37. DOI:10.1016/B978-0-12-821328-5.00001-9
  • Jin W, Zhang C, Jin S, et al. Wire arc additive manufacturing of stainless steels: a review. Appl Sci. 2020;10; DOI:10.3390/app10051563
  • Zhang C, Yu H, Sun D, et al. Fabrication of multi-material components by wire arc additive manufacturing. Coatings. 2022;12:1683. DOI:10.3390/COATINGS12111683
  • Wang JF, Sun QJ, Wang H, et al. Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. Mater Sci Eng A. 2016;676:395–405. DOI:10.1016/J.MSEA.2016.09.015
  • Rodrigues TA, Cipriano Farias FW, Avila JA, et al. Effect of heat treatments on Inconel 625 fabricated by wire and arc additive manufacturing: an in situ synchrotron X-ray diffraction analysis. Sci Technol Weld Join. 2023;2023:534–539. DOI:10.1080/13621718.2023.2187927
  • Tanvir ANM, Ahsan MRU, Ji C, et al. Heat treatment effects on Inconel 625 components fabricated by wire + arc additive manufacturing (WAAM)—part 1: microstructural characterization. Int J Adv Manuf Technol. 2019;103:3785–3798. DOI:10.1007/S00170-019-03828-6/METRICS
  • Tanvir ANM, Ahsan MRU, Seo G, et al. Heat treatment effects on Inconel 625 components fabricated by wire + arc additively manufacturing (WAAM)—part 2: mechanical properties. Int J Adv Manuf Technol. 2020;110:1709–1721. DOI:10.1007/S00170-020-05980-W/METRICS
  • Votruba V, Diviš I, Pilsová L, et al. Experimental investigation of CMT discontinuous wire arc additive manufacturing of Inconel 625. Int J Adv Manuf Technol. 2022;122:711–727. DOI:10.1007/s00170-022-09878-7
  • Yangfan W, Xizhang C, Chuanchu S. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surf Coat Technol. 2019;374:116–123. DOI:10.1016/J.SURFCOAT.2019.05.079
  • Ravi G, Murugan N, Arulmani R. Microstructure and mechanical properties of Inconel-625 slab component fabricated by wire arc additive manufacturing. Mater Sci Technol. 2020;36:1785–1795. DOI:10.1080/02670836.2020.1836737
  • Jiang Q, Zhang P, Yu Z, et al. Microstructure and mechanical properties of thick-walled Inconel 625 alloy manufactured by wire arc additive manufacture with different torch paths. Adv Eng Mater. 2021;23:1–13. DOI:10.1002/adem.202000728
  • Li J, Wei Z, Zhou B, et al. Densification, microstructure and properties of 90W-7Ni-3Fe fabricated by selective laser melting. Met. 2019;9:884. DOI:10.3390/MET9080884
  • Iveković A, Montero-Sistiaga ML, Vanmeensel K, et al. Effect of processing parameters on microstructure and properties of tungsten heavy alloys fabricated by SLM. Int J Refract Met Hard Mater. 2019;82:23–30. DOI:10.1016/J.IJRMHM.2019.03.020
  • Li C, Wang Y, Ma S, et al. Densification, microstructural evolutions of 90W-7Ni-3Fe tungsten heavy alloys during laser melting deposition process. Int J Refract Met Hard Mater. 2020;91:105254. DOI:10.1016/J.IJRMHM.2020.105254
  • Wei C, Ye H, Zhao Z, et al. Microstructure and fracture behavior of 90W-7Ni-3Fe alloy fabricated by laser directed energy deposition. J Alloys Compd. 2021;865:158975. DOI:10.1016/J.JALLCOM.2021.158975
  • Wang YP, Ma SY, Yang XS, et al. Microstructure and strengthening mechanisms of 90W–7Ni–3Fe alloys prepared using laser melting deposition. J Alloys Compd. 2020;838:155545. DOI:10.1016/J.JALLCOM.2020.155545
  • Groden C, Traxel KD, Afrouzian A, et al. Inconel 718-W7Ni3Fe bimetallic structures using directed energy deposition-based additive manufacturing. Virt Phys Protyp. 2022;17:170–180. DOI:10.1080/17452759.2022.2025673
  • Zhang Y, Groden C, Nyberg E, et al. W7Ni3Fe-Ti6Al4 V bimetallic layered structures via directed energy deposition. Virt Phys Protyp. 2022;18; DOI:10.1080/17452759.2022.2137048
  • Wei C, Liu L, Gu Y, et al. Multi-material additive-manufacturing of tungsten – copper alloy bimetallic structure with a stainless-steel interlayer and associated bonding mechanisms. Addit Manuf. 2022;50:102574. DOI:10.1016/J.ADDMA.2021.102574
  • Yang Z, Zhang X, Cheng J, et al. Effect of bonding process on the microstructures and strength of W/steel joints with a W-Cu-Ni interlayer. Int J Refract Met Hard Mater. 2022;106:105846.
  • Li S, Chen L, Qiu W, et al. Performance and evolution of W/steel joint fabricated by selective laser melting. Sci Technol Weld Join. 2022;27:638–646. DOI:10.1080/13621718.2022.2106015
  • Yan A, Wang Z, Yang T, et al. Microstructure, thermal physical property and surface morphology of W-Cu composite fabricated via selective laser melting. Mater Des. 2016;109:79–87. DOI:10.1016/J.MATDES.2016.07.049
  • Li R, Shi Y, Liu J, et al. Selective laser melting W-10 wt.% Cu composite powders. Int J Adv Manuf Technol. 2010;48:597–605. DOI:10.1007/S00170-009-2304-4/METRICS
  • Zhang D, Cai Q, Liu J, et al. Microstructural evolvement and formation of selective laser melting W-Ni-Cu composite powder. Int J Adv Manuf Technol. 2013;67:2233–2242. DOI:10.1007/S00170-012-4644-8/METRICS
  • Messler RW. Principles of welding : processes, physics, chemistry, and metallurgy, (2004) 662. https://www.wiley.com/en-us/Principles+of+Welding%3A+Processes%2C+Physics%2C+Chemistry%2C+and+Metallurgy-p-9783527617494 [cited 17 Sep 2023].
  • Selvi S, Vishvaksenan A, Rajasekar E. Cold metal transfer (CMT) technology – an overview. Def Technol. 2018;14:28–44. DOI:10.1016/j.dt.2017.08.002
  • Jafari D, Vaneker THJ, Gibson I. Wire and arc additive manufacturing: opportunities and challenges to control the quality and accuracy of manufactured parts. Mater Des. 2021;202; DOI:10.1016/j.matdes.2021.109471
  • Bollina R, German RM. Heating rate effects on microstructural properties of liquid phase sintered tungsten heavy alloys. Int J Refract Met Hard Mater. 2004;22:117–127. DOI:10.1016/J.IJRMHM.2004.01.006
  • Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271–295. DOI:10.1016/j.mattod.2021.03.020
  • Kou S. Welding metallurgy, Weld. Metall. (2002). DOI:10.1002/0471434027.
  • Hillert M, Qiu C. A thermodynamic assessment of the Fe-Cr-Ni-C system. Metall Trans A. 1991;22:2187–2198. DOI:10.1007/BF02664985/METRICS
  • Diliberto S, Kessler O, Rapin C, et al. Development of chromia forming Mo-W-Cr alloys: synthesis and characterization. J Mater Sci. 2002;37:3277–3284. DOI:10.1023/A:1016191202525
  • Reisner M, Oberkofler M, Elgeti S, et al. Interdiffusion and phase formation at iron-tungsten interfaces. Nucl Mater Energy. 2019;19:189–194. DOI:10.1016/j.nme.2019.01.033
  • Wang X, Wraith M, Burke S, et al. Densification of W-Ni-Fe powders using laser sintering. Int J Refract Met Hard Mater. 2016;56:145–150. DOI:10.1016/j.ijrmhm.2016.01.006
  • Şahin Y. Recent progress in processing of tungsten heavy alloys. J Powder Technol. 2014;2014:1–22. DOI:10.1155/2014/764306
  • Bannykh OA, Kurbatkina OL. Phase diagram of Fe-Ni-W system. Izv Akad Nauk SSSR Met. 1982: 197–203. http://inis.iaea.org/search/search.aspx?orig_q=RN:14798632.
  • Muster WJ, Yoon DN, Huppmann WJ. Solubility and volume diffusion of nickel in tungsten at 1640°C. J Less Common Met. 1979;65:211–216. DOI:10.1016/0022-5088(79)90111-5
  • Banovic SW, DuPont IN, Marder AR. Dilution control in gas-tungsten-arc welds involving superaustenitic stainless steels and nickel-based alloys. Metall Mater Trans B. 2001;32:1171–1176. DOI:10.1007/s11663-001-0104-9
  • Om H, Pandey S. Effect of heat input on dilution and heat affected zone in submerged arc welding process. Sadhana Acad Proc Eng Sci. 2013;38:1369–1391. DOI:10.1007/s12046-013-0182-9
  • Naffakh H, Shamanian M, Ashrafizadeh F. Microstructural evolutions in dissimilar welds between AISI 310 austenitic stainless steel and Inconel 657. J Mater Sci. 2010;45:2564–2573. DOI:10.1007/s10853-010-4227-8
  • Dwivedi DK. Fundamentals of dissimilar metal joining by arc and resistance welding processes. Dissimilar Met Join. 2023: 23–61. DOI:10.1007/978-981-99-1897-3_2
  • Magomedov AM, Naidu SVN, Sriramamurthy AM, et al. In-Zn Cr-W The Cr-W (Chromium-Tungsten) System, 1979.
  • Kajihara M, Kikuchi M, Tanaka R. Calculation of the equilibrium phase diagram of the Ni-Cr-W ternary system. Tetsu Hagane. 1986;72:862–869. http://inis.iaea.org/search/search.aspx?orig_q=RN:18017676.
  • German RM. Sintered tungsten heavy alloys: review of microstructure, strength, densification, and distortion. Int J Refract Met Hard Mater. 2022;108:105940. DOI:10.1016/j.ijrmhm.2022.105940