199
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Heat treatment effects and variant selection in multi-material laser powder bed fusion of FeNi- and CoCr-based alloys

ORCID Icon, , , , &
Article: e2372629 | Received 08 Feb 2024, Accepted 15 Jun 2024, Published online: 15 Jul 2024

References

  • Cheung KC, Gershenfeld N. Reversibly assembled cellular composite materials. Science. 2013;341:1219–1221. doi:10.1126/science.1240889
  • Vaezi M, Chianrabutra S, Mellor B, et al. Multiple material additive manufacturing – Part 1: a review. Virtual Phys Prototyp. 2013;8:19–50. doi:10.1080/17452759.2013.778175
  • Sing SL, Huang S, Goh GD, et al. Emerging metallic systems for additive manufacturing: in-situ alloying and multi-metal processing in laser powder bed fusion. Prog Mater Sci. 2021;119:38–45. doi:10.1016/j.pmatsci.2021.100795
  • Liu Y, Sing SL. A review of advances in additive manufacturing and the integration of high-performance polymers, alloys, and their composites. Mater Sci Addit Manuf. 2023;2:2–6. doi:10.36922/msam.1587
  • Wang D, Liu L, Deng G, et al. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual Phys Prototyp. 2022;17:329–365. doi:10.1080/17452759.2022.2028343
  • Wei C, Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys Prototyp. 2021;16:347–371. doi:10.1080/17452759.2021.1928520
  • Zhou K, Hnkan C. Powder-based additive manufacturing: Materials, techniques and applications, 2021.
  • Zheng D, Li R, Kang J, et al. Achieving superelastic shape recoverability in smart flexible CuAlMn metamaterials via 3D printing. Int J Mach Tools Manuf. 2024;195:1–3. doi:10.1016/j.ijmachtools.2023.104110
  • Nyamuchiwa K, Palad R, Panlican J, et al. Recent progress in hybrid additive manufacturing of metallic materials. Appl Sci. 2023;13:9–16. doi:10.3390/app13148383
  • Han R, Li X, Chen H, et al. Microstructure evolution and mechanical properties of TiB2/18Ni300 composite material produced by laser additive manufacturing. J Mater Res Technol. 2023;24:4517–4533. doi:10.1016/j.jmrt.2023.04.043
  • Niu M, Zhou G, Wang W, et al. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel. Acta Mater. 2019;179:296–307. doi:10.1016/j.actamat.2019.08.042
  • Haftlang F, Seol JB, Zargaran A, et al. Chemical core-shell metastability-induced large ductility in medium-entropy maraging and reversion alloys. Acta Mater. 2023;256:1–6. doi:10.1016/j.actamat.2023.119115
  • Antunes LHM, Hoyos JJ, Andrade TC, et al. Deformation-induced martensitic transformation in Co-28Cr-6Mo alloy produced by laser powder bed fusion: Comparison surface vs. bulk. Addit Manuf. 2021;46:3–8. doi:10.1016/j.addma.2021.102100
  • Coutinho Saraiva BR, Novotný L, Carpentieri B, et al. Effect of cyclic loading on microstructure and crack propagation in additively manufactured biomaterial Co–Cr–Mo alloy. J Mater Res Technol. 2023;26:3905–3916. doi:10.1016/j.jmrt.2023.08.185
  • Groden C, Champagne V, Bose S, et al. Inconel 718-CoCrMo bimetallic structures through directed energy deposition-based additive manufacturing. Mater Sci Addit Manuf. 2022;1:2–5. doi:10.18063/msam.v1i3.18
  • Wen Y, Zhang B, Narayan RL, et al. Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718. Addit Manuf. 2021;40:1–5. doi:10.1016/j.addma.2021.101926
  • Bartolomeu F, Carvalho O, Gasik M, et al. Multi-functional Ti6Al4V-CoCrMo implants fabricated by multi-material laser powder bed fusion technology: a disruptive material’s design and manufacturing philosophy. J Mech Behav Biomed Mater. 2023;138:2–6. doi:10.1016/j.jmbbm.2022.105583
  • Ben-Artzy A, Reichardt A, Borgonia J-P, et al. Compositionally graded SS316 to C300 maraging steel using additive manufacturing. Mater Des. 2021;201:3–9. doi:10.1016/j.matdes.2021.109500
  • Bai Y, Zhao C, Zhang Y, et al. Microstructure and mechanical properties of additively manufactured multi-material component with maraging steel on CrMn steel. Mater Sci Eng A. 2021;802:4–8. doi:10.1016/j.msea.2020.140630
  • Pasco J, Tian Y, Chadha K, et al. Unusual interface phase transformation during continuous additive manufacturing of maraging steel and Co–30Cr–7Mo alloy. Mater Sci Eng A. 2023;881:2–11. doi:10.1016/j.msea.2023.145336
  • Niu MC, Yin LC, Yang K, et al. Synergistic alloying effects on nanoscale precipitation and mechanical properties of ultrahigh-strength steels strengthened by Ni3Ti, Mo-enriched, and Cr-rich co-precipitates. Acta Mater. 2021;209:4–13. doi:10.1016/j.actamat.2021.116788
  • Wang X, Li W, Yao Y, et al. In-situ alloyed ultrahigh strength steels via additive manufacturing. Addit Manuf. 2023;77:3–10. doi:10.1016/j.addma.2023.103825
  • Schneck M, Horn M, Schmitt M, et al. Review on additive hybrid- and multi-material-manufacturing of metals by powder bed fusion: state of technology and development potential. Prog Addit Manuf. 2021;6:881–894. doi:10.1007/s40964-021-00205-2
  • Rao J, Sing SL, Lim JCW, et al. Detection and characterisation of defects in directed energy deposited multi-material components using full waveform inversion and reverse time migration. Virtual Phys Prototyp. 2022;17:1047–1057. doi:10.1080/17452759.2022.2086142
  • Kurosu S, Matsumoto H, Chiba A. Isothermal phase transformation in biomedical Co-29Cr-6Mo alloy without addition of carbon or nitrogen. Metall Mater Transact A. 2010;41:2613–2625. doi:10.1007/s11661-010-0273-8
  • Roudnická M, Kubásek J, Pantělejev L, et al. Heat treatment of laser powder-bed-fused Co–28Cr–6Mo alloy to remove its microstructural instability by massive FCC→HCP transformation. Addit Manuf. 2021;47:2–8. doi:10.1016/j.addma.2021.102265
  • Mori M, Yamanaka K, Chiba A. Phase decomposition in biomedical Co–29Cr–6Mo–0.2N alloy during isothermal heat treatment at 1073K. J Alloys Compd. 2014;590:411–416. doi:10.1016/j.jallcom.2013.12.126
  • Takaichi A, Kajima Y, Kittikundecha N, et al. Effect of heat treatment on the anisotropic microstructural and mechanical properties of Co–Cr–Mo alloys produced by selective laser melting. J Mech Behav Biomed Mater. 2020;102:5–9. doi:10.1016/j.jmbbm.2019.103496
  • Donkor BT, Song J, Fu Y, et al. Accelerated γ-face-centered cubic to ϵ-hexagonal close packed massive transformation in a laser powder bed fusion additively manufactured Co-29Cr-5Mo alloy. Scr Mater. 2020;179:65–69. doi:10.1016/j.scriptamat.2020.01.012
  • Kurosu S, Nomura N, Chiba A. Microstructure and Mechanical Properties of Co-29Cr-6Mo Alloy Aged at 1023 K. Mater Trans. 2007;48:1517–1522. doi:10.2320/matertrans.MRA2007606
  • Putaux J-L, Chevalier J-P. HREM study of self-accommodated thermal ϵ-martensite in an Fe-Mn-Si-Cr-Ni shape memory alloy. Acta Mater. 1996;44:1701–1716. doi:10.1016/1359-6454(95)00268-5
  • Nyyssönen T, Gazder AA, Hielscher R, et al. Habit plane determination from reconstructed parent phase orientation maps. Acta Mater. 2023;255:3–11. doi:10.1016/j.actamat.2023.119035
  • Bain EC, Dunkirk NY. The nature of martensite. Trans AIME. 1924;70:25–47.
  • Ray RK, Jonas JJ. Transformation textures in steels. Int Mater Rev. 1990;35:1–36. doi:10.1179/095066090790324046
  • Jonas JJ, He Y, Godet S. Representation of misorientations in Rodrigues-Frank space: application to the Bain, Kurdjumov-Sachs, Nishiyama-Wassermann, Pitsch and Greninger-Troiano orientation relationships. Mater Sci Forum. 2005;495-497:1177–1182. doi:10.4028/www.scientific.net/MSF.495-497.1177
  • Godet S, Glez JC, He Y, et al. Grain-scale characterization of transformation textures. J Appl Crystallogr. 2004;37:417–425. doi:10.1107/S0021889804007320
  • He Y, Godet S, Jacques PJ, et al. Crystallographic relations between face- and body-centred cubic crystals formed under near-equilibrium conditions: observations from the Gibeon meteorite. Acta Mater. 2006;54:1323–1334. doi:10.1016/j.actamat.2005.11.008
  • Truong TD, Asala G, Ola OT, et al. Effects of additive manufacturing process parameters and heat treatment on texture evolution and variant selection during austenite-martensite transformation in 18%Ni-M350 maraging steel. Mater Charact. 2023;204:4–7. doi:10.1016/j.matchar.2023.113190
  • Zhang M, Yang Y, Song C, et al. An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting. J Alloys Compd. 2018;750:878–886. doi:10.1016/j.jallcom.2018.04.054
  • Wei S, Kumar P, Lau KB, et al. Effect of heat treatment on the microstructure and mechanical properties of 2.4 GPa grade maraging steel fabricated by laser powder bed fusion. Addit Manuf. 2022;59:2–11. doi:10.1016/j.addma.2022.103190
  • Niessen F, Nyyssönen T, Gazder AA, et al. Parent grain reconstruction from partially or fully transformed microstructures inMTEX. J Appl Crystallogr. 2022;55:180–194. doi:10.1107/S1600576721011560
  • Miller MK, Forbes RG. Atom-probe tomography: the local electrode atom probe. Boston, MA: Springer US; 2014. doi:10.1007/978-1-4899-7430-3
  • Tan C, Zhou K, Ma W, et al. Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture. Mater Des. 2018;155:77–85. doi:10.1016/j.matdes.2018.05.064
  • Schubert Th, Löser W, Schinnerling S, et al. Alternative phase formation in thin strip casting of stainless steels, Mater Sci Technol. 11 (1995) 181–185. doi:10.1179/mst.1995.11.2.181
  • López HF, Saldivar-Garcia AJ. Martensitic transformation in a Cast Co-Cr-Mo-C alloy. Metall Mater Transact A. 2008;39:8–18. doi:10.1007/s11661-007-9370-8
  • Hielscher R, Nyyssönen T, Niessen F, et al. The variant graph approach to improved parent grain reconstruction. Materialia. 2022;22:4–9. doi:10.1016/j.mtla.2022.101399
  • Liu X, Zhou X, Xu B, et al. Morphological development of sub-grain cellular/bands microstructures in selective laser melting. Materials (Basel). 2019;12:3–6. doi:10.3390/ma12081204
  • Mei X, Yan Y, Fu H, et al. Effect of aging temperature on microstructure evolution and strengthening behavior of L-PBF 18Ni(300) maraging steel. Addit Manuf. 2022;58:4–8. doi:10.1016/j.addma.2022.103071
  • Allam T, Pradeep KG, Köhnen P, et al. Tailoring the nanostructure of laser powder bed fusion additively manufactured maraging steel. Addit Manuf. 2020;36:1–6. doi:10.1016/j.addma.2020.101561
  • Jägle EA, Choi P-P, Van Humbeeck J, et al. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J Mater Res. 2014;29:2072–2079. doi:10.1557/jmr.2014.204
  • Tan C, Zhou K, Ma W, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater Des. 2017;134:23–34. doi:10.1016/j.matdes.2017.08.026
  • Dong Z, Han C, Zhao Y, et al. Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in zinc fabricated via laser powder bed fusion. Int J Extreme Manuf. 2024;6:2–5. doi:10.1088/2631-7990/ad3929
  • Traxel KD, Bandyopadhyay A. First Demonstration of Additive Manufacturing of Cutting Tools using Directed Energy Deposition System: Stellite™-Based Cutting Tools. Addit Manuf. 2019;25:460–468. doi:10.1016/j.addma.2018.11.019
  • He Y, Jonas JJ, Godet S, et al. Crystallographic features of theγ-to-α transformation in a Nb-added transformation-induced plasticity steel. Metall Mater Transact A. 2006;37:2641–2653. doi:10.1007/BF02586099
  • Krauss G. Steels: heat treatment and processing principles. Materials Park (OH): ASM International; 1989; https://cir.nii.ac.jp/crid/1130000798012046336 (accessed October 9, 2023).
  • Kubota M, Ushioda K, Miyamoto G, et al. Analysis of recrystallization behavior of hot-deformed austenite reconstructed from electron backscattering diffraction orientation maps of lath martensite. Scr Mater. 2016;112:92–95. doi:10.1016/j.scriptamat.2015.09.020
  • Saville AI, Vogel SC, Creuziger A, et al. Texture evolution as a function of scan strategy and build height in electron beam melted Ti-6Al-4V. Addit Manuf. 2021;46:1–8. doi:10.1016/j.addma.2021.102118
  • T. Maki. 2 - Morphology and substructure of martensite in steels. In: E Pereloma, DV Edmonds, editors, Phase transform. Steels: Woodhead Publishing; 2012: p. 34–58. doi:10.1533/9780857096111.1.34
  • Bishop J.F.W., Hill R. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses, London, Edinburgh, Dublin Philos Mag J Sci. 42 (1951) 414–427. doi:10.1080/14786445108561065
  • Bishop J.F.W., Hill R. A theoretical derivation of the plastic properties of a polycrystalline face-centred metal, London Edinburgh Dublin Philos Mag J Sci. 42 (1951) 1298–1307. doi:10.1080/14786444108561385
  • Sum M, Jonas JJ. A dislocation reaction model for variant selection during the austenite-to-martensite transformation. Texture Stress Microstruct. 1999;31:187–215. doi:10.1155/TSM.31.187
  • Khairallah SA, Anderson AT, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016;108:36–45. doi:10.1016/j.actamat.2016.02.014
  • He YL, Godet S, Jacques PJ, et al. Crystallographic relationships between FCC and BCC crystals: a study using EBSD techniques. Solid State Phenomena. 2005;105:121–126. doi:10.4028/www.scientific.net/SSP.105.121
  • Olson GB, Cohen M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Metall Trans A. 1976;7:1897–1904. doi:10.1007/BF02659822
  • Conde FF, Escobar JD, Oliveira JP, et al. Austenite reversion kinetics and stability during tempering of an additively manufactured maraging 300 steel. Addit Manuf. 2019;29:3–7. doi:10.1016/j.addma.2019.100804
  • Kürnsteiner P, Wilms MB, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition. Acta Mater. 2017;129:52–60. doi:10.1016/j.actamat.2017.02.069
  • Conde FF, Avila JA, Oliveira JP, et al. Effect of the as-built microstructure on the martensite to austenite transformation in a 18Ni maraging steel after laser-based powder bed fusion. Addit Manuf. 2021;46:3–9. doi:10.1016/j.addma.2021.102122
  • dos Santos LPM, Béreš M, de Castro MO, et al. Kinetics of reverted austenite in 18 wt.% Ni grade 300 maraging steel: an in-situ synchrotron X-ray diffraction and texture study. JOM. 2020;72:3502–3512. doi:10.1007/s11837-020-04254-w