188
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fundamental investigation into mass transfer process and microstructural transformation pathways in Ti-6Al-4V via underwater wire-laser directed energy deposition

, , , , &
Article: e2374051 | Received 24 Apr 2024, Accepted 22 Jun 2024, Published online: 12 Jul 2024

References

  • Liu J, Suslov S, Ren Z, et al. Microstructure evolution in Ti64 subjected to laser-assisted ultrasonic nanocrystal surface modification. Int J Machine Tools Manuf. 2019;136:19–33. doi:10.1016/j.ijmachtools.2018.09.005
  • Chen J, Fabijanic D, Brandt M, et al. Dynamic α globularization in laser powder bed fusion additively manufactured Ti-6Al-4V. Acta Mater. 2023;255:119076, doi:10.1016/j.actamat.2023.119076
  • Lu J, Lu H, Xu X, et al. High-performance integrated additive manufacturing with laser shock peening-induced microstructural evolution and improvement in mechanical properties of Ti-6Al-4V alloy components. Int J Mach Tools Manuf. 2020;148:103475, doi:10.1016/j.ijmachtools.2019.103475
  • Kumar C, Das M, Paul CP, et al. Comparison of bead shape, microstructure and mechanical properties of fiber laser beam welding of 2 mm thick plates of Ti-6Al-4V alloy. Opt Laser Technol. 2018;105:306–321. doi:10.1016/j.optlastec.2018.02.021
  • Łabanowski J. Development of under-water welding techniques. Weld Int. 2011;25:933–937. doi:10.1080/09507116.2010.540847
  • Chen J, Wen Z, Jia C, et al. The mechanisms of underwater wet flux-cored arc welding assisted by ultrasonic frequency pulse high-current. J Mater Process Technol. 2022;304:117567, doi:10.1016/j.jmatprotec.2022.117567
  • Rowe M, Liu S. Recent developments in underwater wet welding. Sci Technol Weld Join. 2001;6:387–396. doi:10.1179/stw.2001.6.6.387
  • Świerczyńska A, Fydrych D, Rogalski G. Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. Int J Hydrog Energy. 2017;42:24532–24540. doi:10.1016/j.ijhydene.2017.07.225
  • Han Y, Jia C, Zhang M, et al. Key mechanisms and process features of the metal transfer and cavity evolution during underwater submerged arc welding. J Mater Process Technol. 2023;319:118053, doi:10.1016/j.jmatprotec.2023.118053
  • Zhang X, Ashida E, Shono S, et al. Effect of shielding conditions of local dry cavity on weld quality in underwater Nd:YAG laser welding. J Mater Process Technol. 2006;174:34–41. doi:10.1016/j.jmatprotec.2004.12.009
  • Fu Y, Guo N, Zhu B, et al. Microstructure and properties of underwater laser welding of TC4 titanium alloy. J Mater Process Technol. 2020;275:116372, doi:10.1016/j.jmatprotec.2019.116372
  • Guo N, Fu Y, Xing X, et al. Underwater local dry cavity laser welding of 304 stainless steel. J Mater Process Technol. 2018;260:146–155. doi:10.1016/j.jmatprotec.2018.05.025
  • Hino T, Tamura M, Tanaka Y, et al. Development of underwater laser cladding and underwater laser seal welding techniques for reactor components. J Power Energy Syst. 2009;3:51–59. doi:10.1299/jpes.3.51
  • Liu Y, Li C, Huang X, et al. Investigation on solidification structure and temperature field with novel processing of synchronous powder-feeding underwater laser cladding. J Mater Process Technol. 2021;296:117166, doi:10.1016/j.jmatprotec.2021.117166
  • Fu Y, Guo N, Cheng Q, et al. In-situ formation of laser-cladded layer on Ti-6Al-4V titanium alloy in underwater environment. Opt Lasers Eng. 2020;131:106104, doi:10.1016/j.optlaseng.2020.106104
  • Guo N, Wu D, Yu M, et al. Microstructure and properties of Ti-6Al-4V titanium alloy prepared by underwater wire feeding laser deposition. J Manuf Process. 2022;73:269–278. doi:10.1016/j.jmapro.2021.11.002
  • Feenstra DR, Cruz V, Gao X, et al. Effect of build height on the properties of large format stainless steel 316L fabricated via directed energy deposition. Addit Manuf. 2020;34:101205, doi:10.1016/j.addma.2020.101205
  • Kistler NA, Corbin DJ, Nassar AR, et al. Effect of processing conditions on the microstructure, porosity, and mechanical properties of Ti-6Al-4V repair fabricated by directed energy deposition. J Mater Process Technol. 2019;264:172–181. doi:10.1016/j.jmatprotec.2018.08.041
  • Fu Y, Guo N, Zhou L, et al. Underwater wire-feed laser deposition of the Ti-6Al-4V titanium alloy. Mater Design. 2020;186:108284, doi:10.1016/j.matdes.2019.108284
  • Fu Y, Guo N, Wang G, et al. Underwater additive manufacturing of Ti-6Al-4V alloy by laser metal deposition: formability, gran growth and microstructure evolution. Mater Design. 2021;197:109196, doi:10.1016/j.matdes.2020.109196
  • Wang ZD, Yang K, Chen MZ, et al. Investigation of the microstructure and mechanical properties of Ti-6Al-4V repaired by the powder-blown underwater directed energy deposition technique. Mater Sci Eng A. 2022;831:142186, doi:10.1016/j.msea.2021.142186
  • Wang ZD, Sun GF, Chen MZ, et al. Investigation of the underwater laser directed energy deposition technique for the on-site repair of hsla-100 steel with excellent performance. Addit Manuf. 2021;39:101884, doi:10.1016/j.addma.2021.101884
  • Baufeld B, Brandl E, Van der Biest O. Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition. J Mater Process Technol. 2011;211:1146–1158. doi:10.1016/j.jmatprotec.2011.01.018
  • Szost BA, Terzi S, Martina F, et al. A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components. Mater Design. 2016;89:559–567. doi:10.1016/j.matdes.2015.09.115
  • Yu Y, Huang W, Wang G, et al. Investigation of melting dynamics of filler wire during wire feed laser welding. J Mech Sci Technol. 2013;27:1097–1108. doi:10.1007/s12206-013-0218-4
  • Tao W, Yang Z, Chen Y, et al. Double-sided fiber laser beam welding process of t-joints for aluminum aircraft fuselage panels: filler wire melting behavior, process stability, and their effects on porosity defects. Opt Laser Technol. 2013;52:1–9. doi:10.1016/j.optlastec.2013.04.003
  • Guo Q, Zhao C, Qu M, et al. In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing. Addit Manuf. 2020;31:100939, doi:10.1016/j.addma.2019.100939
  • Liu S, Shin YC. Additive manufacturing of Ti-6Al-4V alloy: a review. Mater Design. 2019;164:107552, doi:10.1016/j.matdes.2018.107552
  • Yang J, Han J, Yu H, et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy. Mater Design. 2016;110:558–570. doi:10.1016/j.matdes.2016.08.036
  • Carroll BE, Palmer TA, Beese AM. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 2015;87:309–320. doi:10.1016/j.actamat.2014.12.054
  • Wang H, Zhu ZG, Chen H, et al. Effect of cyclic rapid thermal loadings on the microstructural evolution of a crmnfeconi high-entropy alloy manufactured by selective laser melting. Acta Mater. 2020;196:609–625. doi:10.1016/j.actamat.2020.07.006
  • Washenfelder RA, Flores JM, Brock CA, et al. Broadband measurements of aerosol extinction in the ultraviolet spectral region. Atmos Meas Tech. 2013;6:861–877. doi:10.5194/amt-6-861-2013
  • Meeten GH. Refraction by spherical particles in the intermediate scattering region. Opt Commun. 1997;134:233–240. doi:10.1016/S0030-4018(96)00577-9
  • Ma G, Li L, Chen Y. Effects of beam configurations on wire melting and transfer behaviors in dual beam laser welding with filler wire. Opt Laser Technol. 2017;91:138–148. doi:10.1016/j.optlastec.2016.12.019
  • Huang W, Chen S, Xiao J, et al. Investigation of filler wire melting and transfer behaviors in laser welding with filler wire. Opt Laser Technol. 2021;134:106589, doi:10.1016/j.optlastec.2020.106589
  • Haubrich J, Gussone J, Barriobero-Vila P, et al. The role of lattice defects, element partitioning and intrinsic heat effects on the microstructure in selective laser melted Ti-6Al-4V. Acta Mater. 2019;167:136–148. doi:10.1016/j.actamat.2019.01.039
  • Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition. Acta Mater. 2015;85:74–84. doi:10.1016/j.actamat.2014.11.028
  • Xu W, Lui EW, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater. 2017;125:390–400. doi:10.1016/j.actamat.2016.12.027
  • Barriobero-Vila P, Artzt K, Stark A, et al. Mapping the geometry of Ti-6Al-4V: from martensite decomposition to localized spheroidization during selective laser melting. Scr Mater. 2020;182:48–52. doi:10.1016/j.scriptamat.2020.02.043
  • Zhou Y, Qin G, Li L, et al. Formability, microstructure and mechanical properties of Ti-6Al-4V deposited by wire and arc additive manufacturing with different deposition paths. Mater Sci Eng A. 2020;772:138654, doi:10.1016/j.msea.2019.138654
  • Wang F, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V. Metall Mater Trans A. 2013;44:968–977. doi:10.1007/s11661-012-1444-6
  • Sridharan N, Chen Y, Nandwana P, et al. On the potential mechanisms of beta to alpha’ plus beta decomposition in two phase titanium alloys during additive manufacturing: a combined transmission Kikuchi diffraction and 3D atom probe study. J Mater Sci. 2020;55:1715–1726. doi:10.1007/s10853-019-03984-w
  • Wang H, Chao Q, Yang L, et al. Introducing transformation twins in titanium alloys: an evolution of alpha-variants during additive manufacturing. Mater Res Lett. 2021;9:119–126. doi:10.1080/21663831.2020.1850536
  • Shi R, Dixit V, HL F, et al. Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys. Acta Mater. 2014;75:156–166. doi:10.1016/j.actamat.2014.05.003
  • Bhattacharyya D, Viswanathan GB, Fraser HL. Crystallographic and morphological relationships between β phase and the Widmanstätten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy. Acta Mater. 2007;55:6765–6778. doi:10.1016/j.actamat.2007.08.029
  • Baufeld B, Van der Biest O, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties. Mater Design. 2010;31:S106–SS11. doi:10.1016/j.matdes.2009.11.032
  • Moridi A, Demir AG, Caprio L, et al. Deformation and failure mechanisms of Ti-6Al-4V as built by selective laser melting. Mater Sci Eng A. 2019;768:138456, doi:10.1016/j.msea.2019.138456