0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure evolution and strengthening mechanism of TiC/ Ti6Al4 V composites fabricated by selective laser melting during isothermal deformation

, , , , , & show all
Article: e2374466 | Received 31 Mar 2024, Accepted 22 Jun 2024, Published online: 25 Jul 2024

References

  • Brewer WD, Bird RK, Wallace TA. Titanium alloys and processing for high speed aircraft. Mater Sci Eng A, 1998;243(1): 299-304.doi:10.1016/S0921-5093(97)00818-6
  • Boyer RR. An overview on the use of titanium in the aerospace industry. Mater Sci Eng A, 1996;213(1): 103-114. doi:10.1016/0921-5093(96)10233-1
  • Banerjee D, Williams JC. Perspectives on Titanium Science and Technology [J]. Acta Mater. 2013;61(3):844–879. doi:10.1016/j.actamat.2012.10.043
  • Li J, Cai J, Zhou M, et al. High Cycle Fatigue Properties and Fracture Behavior of TC4 Titanium Alloy at Room and Elevated Temperatures [J]. 2023;972: 278-286.doi:10.1007/978-981-19-7652-0_26
  • Armstrong M, Mehrabi H, Naveed N. An overview of modern metal additive manufacturing technology. J Manuf Processes. 2022;84:1001–1029. doi:10.1016/j.jmapro.2022.10.060
  • Xie Z, Dai Y, Ou X, et al. Effects of selective laser melting build orientations on the microstructure and tensile performance of Ti–6Al–4V alloy. Mater Sci Eng A. 2020;776:139001. doi:10.1016/j.msea.2020.139001
  • Liović D, Franulović M, Kozak D. Material models and mechanical properties of titanium alloys produced by selective laser melting. Procedia Struct Integr. 2021;31:86–91. doi:10.1016/j.prostr.2021.03.014
  • Ghodrati H, Ghomashchi R. Effect of graphene dispersion and interfacial bonding on the mechanical properties of metal matrix composites: An overview. FlatChem. 2019;16:100113. doi:10.1016/j.flatc.2019.100113
  • Jiao Y, Huang L, Geng L. Progress on discontinuously reinforced titanium matrix composites, J Alloys Compd, 2018, 767: 1196-1215.doi:10.1016/j.jallcom.2018.07.100
  • Poletti C, Balog M, Schubert T, et al. Production of titanium matrix composites reinforced with SiC particles. Compos Sci Technol. 2008;68(9):2171–2177. doi:10.1016/j.compscitech.2008.03.018
  • Kim YJ, Chung H, Kang SJ. Processing and mechanical properties of Ti–6Al–4V/TiC in situ composite fabricated by gas–solid reaction. Mater Sci Eng A, 2002;333(1): 343-350. doi:10.1016/S0921-5093(01)01858-5
  • Huang LJ, Yang FY, Hu HT, et al. TiB whiskers reinforced high temperature titanium Ti60 alloy composites with novel network microstructure. Mater Des 2013;51:421–426. doi:10.1016/j.matdes.2013.04.048
  • Kondoh K, Threrujirapapong T, Imai H, et al. Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes. Compos Sci Technol. 2009;69(7):1077–1081. doi:10.1016/j.compscitech.2009.01.026
  • Even C, Arvieu C, Quenisset JM. Powder route processing of carbon fibres reinforced titanium matrix composites. Compos Sci Technol, 2008;68(6): 1273-1281.doi:10.1016/j.compscitech.2007.12.014
  • Luo X, Ji X, Yang Y, et al. Microstructure evolution of C/Mo double-coated SiC fiber reinforced Ti6Al4V composites. Mater Sci Eng A, 2014, 597: 95-101.doi:10.1016/j.msea.2013.12.077
  • Hayat MD, Singh H, He Z, et al. Titanium metal matrix composites: An overview. Composites Part A. 2019;121:418–438. doi:10.1016/j.compositesa.2019.04.005
  • Zhou Z, Liu Y, Liu X, et al. Microstructure evolution and mechanical properties of in-situ Ti6Al4V–TiB composites manufactured by selective laser melting. Composites Part B. 2021;207:108567. doi:10.1016/j.compositesb.2020.108567
  • Gu D, Wang Z, Shen Y, et al. In-situ TiC particle reinforced Ti–Al matrix composites: Powder preparation by mechanical alloying and Selective Laser Melting behavior. Appl Surf Sci 2009;255(22):9230–9240. doi:10.1016/j.apsusc.2009.07.008
  • Ming W, Chen J, An Q, et al. Dynamic mechanical properties and machinability characteristics of selective laser melted and forged Ti6Al4V. J Mater Process Technol. 2019; 271: 284-292.doi:10.1016/j.jmatprotec.2019.04.015
  • Li PH, Guo WG, Huang WD, et al. Thermomechanical response of 3D laser-deposited Ti–6Al–4V alloy over a wide range of strain rates and temperatures. Mater Sci Eng A. 2015;647:34–42. doi:10.1016/j.msea.2015.08.043
  • Song J, Han Y, Fang M, et al. Temperature sensitivity of mechanical properties and microstructure during moderate temperature deformation of selective laser melted Ti-6Al-4V alloy. Mater Charact 2020;165:110342. doi:10.1016/j.matchar.2020.110342
  • He Y, Ma YE, Zhang W, et al. Effects of build direction on thermal exposure and creep performance of SLM Ti6Al4V titanium alloy. Eng Fail Anal. 2022;135: 106063.doi:10.1016/j.engfailanal.2022.106063
  • Kim YK, Park SH, Yu JH, et al. Improvement in the high-temperature creep properties via heat treatment of Ti-6Al-4V alloy manufactured by selective laser melting. Mater Sci Eng A. 2018;715:33–40. doi:10.1016/j.msea.2017.12.085
  • Cheng Q, Zhang P, Ma X, et al. Microstructure evolution and wear mechanism of in situ prepared Ti–TiN cermet layers at high temperature. Compos Part B. 2022;242:110028. doi:10.1016/j.compositesb.2022.110028
  • Pan J, Yang J, Zhang W, et al. High-temperature deformation behavior and microstructure evolution of TiBw/Ti6Al4V composites during hot shear-compression deformation. J Mater Res and Technol. 2021;15:1155–1164. doi:10.1016/j.jmrt.2021.08.089
  • Tang MK, Zhang L.C, Zhang N, Microstructural evolution, mechanical and tribological properties of TiC/Ti6Al4 V composites with unique microstructure prepared by SLM. Mater Sci Eng, A. 2021, 141187(814),doi:10.1016/j.msea.2021.141187
  • Jiang Q.H, Li S, Sai Guo, et al. Comparative study on process-structure-property relationships of TiC/Ti6Al4 V and Ti6Al4 V by selective laser melting[J]. Int J Mech Sci. 2023, 107963(241),doi:10.1016/j.ijmecsci.2022.107963
  • Li C, Li W, Lashari MI, et al., Life prediction and failure analysis in laser powder bed fused TiC/Ti6Al4 V titanium matrix composite under high cycle and very high cycle fatigue conditions. Int J Fatigue, 2024, 108101(180), doi:10.1016/j.ijfatigue.2023.108101
  • Luque A, Ghazisaeidi M, Curtin WA. A new mechanism for twin growth in Mg alloys. Acta Mater 2014;81:442–456. doi:10.1016/j.actamat.2014.08.052
  • Chang, S.J., Microstructure and High Temperature-Mechanical Properties of TiC/Graphene/Ti6Al4V Composite Formed by Laser Powder Bed Fusion. Metals (Basel) 13: 163. doi:10.3390/met13010163
  • Motoyama Y, Tokunaga H, Kajino S, et al. Stress–strain behavior of a selective laser melted Ti-6Al-4V at strain rates of 0.001–1/s and temperatures 20–1000 °C. J Mater Process Technol. 2021;294:117141. doi:10.1016/j.jmatprotec.2021.117141
  • Lee WS, Lin CF. High-temperature deformation behaviour of Ti6Al4 V alloy evaluated by high strain-rate compression tests [J]. J Mater Process Technol. 1998;75(1): 127-136. doi:10.1016/S0924-0136(97)00302-6
  • Mutombo K, Siyasiya C, Stumpf WE. Diffusional transformation in Ti6Al4 V alloy during isothermal compression. Trans. Nonferrous Met Soc China, 2019, 29(10): 2078-2089. doi:10.1016/S1003-6326(19)65114-9
  • Villa M, Pantleon K, Reich M, et al. Kinetics of anomalous multi-step formation of lath martensite in steel. Acta Mater 2014;80:468–477. doi:10.1016/j.actamat.2014.08.031
  • Guan RG, Shen YF, Zhao ZY, et al. Nanoscale precipitates strengthened lanthanum-bearing Mg-3Sn-1Mn alloys through continuous rheo-rolling. Sci Rep. 2016;6:23154. doi:10.1038/srep23154
  • Diologent F, Caron P, Almeida T, et al. The γ/γ′ mismatch in Ni based superalloys: In situ measurements during a creep test. Nucl Instrum Methods Phys Res, Sect B, 2003;200: 346-351. doi:10.1016/S0168-583X(02)01699-3
  • Housaer F, Beclin F, Touzin M, et al. Interfacial characterization in carbon nanotube reinforced aluminum matrix composites. Mater Charact 2015;110:94–101. doi:10.1016/j.matchar.2015.10.014
  • Chu K, Wang F, Wang X-h, et al. Interface design of graphene/copper composites by matrix alloying with titanium. Mater Des, 2018, 144: 290-303. doi:10.1016/j.matdes.2018.02.038
  • Zhao Z, Wang S, Du W, et al. Interfacial structures and strengthening mechanisms of in situ synthesized TiC reinforced Ti6Al4V composites by selective laser melting. Ceram Int 2021;47(24):34127–34136. doi:10.1016/j.ceramint.2021.08.323
  • Zhao L Y, Yan H, Chen RS, et al. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy. Mater Sci Technol, 2021, 60: 162-167. doi:10.1016/j.jmst.2020.05.027
  • Lee JH, Lee JU, Kim S-H, et al. Dynamic recrystallization behavior and microstructural evolution of Mg alloy AZ31 through high-speed rolling. J Mater Sci Technol. 2018;34(10):1747–1755. doi:10.1016/j.jmst.2018.03.002
  • Kubin LP, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scr Mater. 2003;48(2):119–125. doi:10.1016/S1359-6462(02)00335-4
  • Gao H, Huang Y, Nix WD, et al. Mechanism-based strain gradient plasticity— I. Theory. J Mech Phys Solids, 1999;47(6): 1239-1263. doi:10.1016/S0022-5096(98)00103-3
  • Yan Z, Wang D, He X, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect Mater Sci Eng, A. 2018;723:212–220. doi:10.1016/j.msea.2018.03.023
  • Wang JB, Zhao ZY, Du WB, et al., Uniaxial compression deformation and fracture mechanism of cold metal transfer (CMT) arc additive Mg–Gd–Y–Zn–Zr alloy, Mater Sci Eng A, 2023;878:145201,doi:10.1016/j.msea.2023.145201
  • Ma Q, Wei K, Xu Y, et al. Exploration of the static softening behavior and dislocation density evolution of TA15 titanium alloy during double-pass hot compression deformation [J]. J Mater Res and Technol, 2022;18: 872-881.doi:10.1016/j.jmrt.2022.02.122
  • Marion C, Dirk P, Eralp D, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Sci Eng. 2010;527:2738–2746. doi:10.1016/j.msea.2010.01.004
  • Zhang Z, Fan J, Tang B, et al. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65. J Mater Sci Technol. 2020;49:56–69. doi:10.1016/j.jmst.2020.02.026
  • Zhao PK, Wei C, Xiao XD, et al. Thermal deformation mechanism of TC11/TC17 linear friction welded joint during isothermal compression. Mater Charact. 2021;178:111319. doi:10.1016/j.matchar.2021.111319
  • Chen L, Sun Y, Li L, et al. Microstructure evolution, mechanical properties, and strengthening mechanism of TiC reinforced Inconel 625 nanocomposites fabricated by selective laser melting. Sci Eng A. 2020;792:139655. doi:10.1016/j.msea.2020.139655
  • Ramakrishnan N. An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater, 1996;44(1): 69-77. doi:10.1016/1359-6454(95)00150-9
  • Nardone VC, Prewo KM. On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr Metall. 1986;20(1): 43-48. doi:10.1016/0036-9748(86)90210-3
  • Zhang Q, Chen DL. A model for predicting the particle size dependence of the low cycle fatigue life in discontinuously reinforced MMCs. Scr Metall. 2004;51(9):863–867. doi:10.1016/j.scriptamat.2004.07.006
  • Taya M, Arsenault RJ. Metal matrix composites: thermomechanical behavior. F. 1989 [C].
  • Ma F, Wang T, Liu P, et al. Mechanical properties and strengthening effects of in situ (TiB+TiC)/Ti-1100 composite at elevated temperatures. Mater Sci Eng, A. 2016;654:352–358. doi:10.1016/j.msea.2015.12.071
  • Brown LM, Stobbs WM. The work-hardening of copper-silica v. equilibrium plastic relaxation by secondary dislocations. Philos Mag: A J Theoretical Experimen Appl Phys. 1976;34(3):351–372. doi:10.1080/14786437608222028
  • Hill D, Banerjee R, Huber D, et al. Formation of equiaxed alpha in TiB reinforced Ti alloy composites. Scr Mater. 2005;52(5):387–392. doi:10.1016/j.scriptamat.2004.10.019
  • Sun S, Wang M, Wang L, et al. The influences of trace TiB and TiC on microstructure refinement and mechanical properties of in situ synthesized Ti matrix composite. Composites Part B. 2012;43(8):3334–3337. doi:10.1016/j.compositesb.2012.01.075