292
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure and mechanical properties of the wire arc additively manufactured 316L/ER70S-6 bimetal structure

ORCID Icon, , & ORCID Icon
Article: e2375105 | Received 16 Mar 2024, Accepted 25 Jun 2024, Published online: 12 Jul 2024

References

  • Lu HZ, Chen T, Liu LH, et al. Constructing function domains in NiTi shape memory alloys by additive manufacturing. Virtual Phys Prototyp. 2022;17(3):563–581. doi:10.1080/17452759.2022.2053821
  • Zhai W, Wang P, Ng FL, et al. Hybrid manufacturing of γ-TiAl and Ti–6Al–4V bimetal component with enhanced strength using electron beam melting. Compos Part B: Eng. 2021;207:108587. doi:10.1016/j.compositesb.2020.108587
  • Zhang K, Wang S, Liu W, et al. Characterization of stainless steel parts by laser metal deposition shaping. Mater Des. 2014;55:104–119. doi:10.1016/j.matdes.2013.09.006
  • Ding D, Pan Z, Cuiuri D, et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol. 2015;81(1–4):465–481. doi:10.1007/s00170-015-7077-3
  • Wynne Z, Buchanan C, Kyvelou P, et al. Dynamic testing and analysis of the world's first metal 3D printed bridge. Case Stud Constr Mater. 2022;17:e01541. doi:10.1016/j.cscm.2022.e01541
  • Palmeira Belotti L, van Dommelen JAW, Geers MGD, et al. Influence of the printing strategy on the microstructure and mechanical properties of thick-walled wire arc additive manufactured stainless steels. J Mater Process Technol. 2024;324:118275. doi:10.1016/j.jmatprotec.2023.118275
  • Wang L, Xue J, Wang Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel. Mater Sci Eng A. 2019;751:183–190. doi:10.1016/j.msea.2019.02.078
  • Horgar A, Fostervoll H, Nyhus B, et al. Additive manufacturing using WAAM with AA5183 wire. J Mater Process Technol. 2018;259:68–74. doi:10.1016/j.jmatprotec.2018.04.014
  • Qi Z, Cong B, Qi B, et al. Properties of wire + arc additively manufactured 2024 aluminum alloy with different solution treatment temperature. Mater Lett. 2018;230:275–278. doi:10.1016/j.matlet.2018.07.144
  • Wang Y, Chen X, Su C. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surf Coat Technol. 2019;374:116–123. doi:10.1016/j.surfcoat.2019.05.079
  • McAndrew AR, Alvarez Rosales M, Colegrove PA, et al. Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement. Addit Manuf. 2018;21:340–349. doi:10.1016/j.addma.2018.03.006
  • Lyu Z, Sato YS, Xu W, et al. Simultaneous enhancements of strength and ductility of wire arc additive manufactured 17-4PH steel via intrinsic heat treatment. J Mater Process Technol. 2023;321:118149. doi:10.1016/j.jmatprotec.2023.118149
  • Caballero A, Ding J, Ganguly S, et al. Wire + Arc additive manufacture of 17-4 PH stainless steel: Effect of different processing conditions on microstructure, hardness, and tensile strength. J Mater Process Technol. 2019;268:54–62. doi:10.1016/j.jmatprotec.2019.01.007
  • Bandyopadhyay A, Zhang Y, Onuike B. Additive manufacturing of bimetallic structures. Virtual Phys Prototyp. 2022;17(2):256–294. doi:10.1080/17452759.2022.2040738
  • Bandyopadhyay A, Heer B. Additive manufacturing of multi-material structures. Mater Sci Eng: R: Rep. 2018;129:1–16. doi:10.1016/j.mser.2018.04.001
  • Wei C, Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys Prototyp. 2021;16(3):347–371. doi:10.1080/17452759.2021.1928520
  • Ahsan MRU, Tanvir ANM, Seo G-J, et al. Heat-treatment effects on a bimetallic additively-manufactured structure (BAMS) of the low-carbon steel and austenitic-stainless steel. Addit Manuf. 2020;32:101036. doi:10.1016/j.addma.2020.101036
  • Marques LFN, Santos EBF, Gerlich AP, et al. Fatigue life assessment of weld joints manufactured by GMAW and CW-GMAW processes. Sci Technol Weld Joining. 2017;22(2):87–96. doi:10.1080/13621718.2016.1194735
  • Ribeiro RA, Assunção PDC, Braga EM, et al. Welding thermal efficiency in cold wire gas metal arc welding. Weld World. 2021;65(6):1079–1095. doi:10.1007/s40194-021-01070-x
  • Dornelas PHG, Payão Filho JC, Farias FWC, et al. Influence of the interpass temperature on the microstructure and mechanical properties of the weld metal (AWS A5.18 ER70S-6) of a narrow gap welded API 5L X70 pipe joint. Int J Press Vessels Pip. 2022;199:104690. doi:10.1016/j.ijpvp.2022.104690
  • Rafieazad M, Ghaffari M, Vahedi Nemani A, et al. Microstructural evolution and mechanical properties of a low-carbon low-alloy steel produced by wire arc additive manufacturing. Int J Adv Manuf Technol. 2019;105(5-6):2121–2134. doi:10.1007/s00170-019-04393-8
  • Rafieazad M, Nemani AV, Ghaffari M, et al. On microstructure and mechanical properties of a low-carbon low-alloy steel block fabricated by wire arc additive manufacturing. J Mater Eng Perform. 2021;30(7):4937–4945. doi:10.1007/s11665-021-05568-9
  • Ermakova A, Mehmanparast A, Ganguly S, et al. Investigation of mechanical and fracture properties of wire and arc additively manufactured low carbon steel components. Theor Appl Fract Mech. 2020;109:102685. doi:10.1016/j.tafmec.2020.102685
  • Ermakova A, Mehmanparast A, Ganguly S, et al. Fatigue crack growth behaviour of wire and arc additively manufactured ER70S-6 low carbon steel components. Int J Fract. 2022;235(1):47–59. doi:10.1007/s10704-021-00545-8
  • Ermakova A, Razavi J, Berto F, et al. Uniaxial and multiaxial fatigue behaviour of wire arc additively manufactured ER70S-6 low carbon steel components. Int J Fatigue. 2023;166:107283. doi:10.1016/j.ijfatigue.2022.107283
  • Chao Q, Cruz V, Thomas S, et al. On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel. Scr Mater. 2017;141:94–98. doi:10.1016/j.scriptamat.2017.07.037
  • Alali M, Todd I, Wynne BP. Through-thickness microstructure and mechanical properties of electron beam welded 20 mm thick AISI 316L austenitic stainless steel. Mater Des. 2017;130:488–500. doi:10.1016/j.matdes.2017.05.080
  • Agrawal AK, Singh A. Limitations on the hardness increase in 316L stainless steel under dynamic plastic deformation. Mater Sci Eng A. 2017;687:306–312. doi:10.1016/j.msea.2017.01.066
  • Zhai W, Guo Y, Aishwarya, et al. Wire arc additive manufacturing of ER70S-6/S355 bimetal component. Mater Sci Eng A. 2024;900:146498. doi:10.1016/j.msea.2024.146498
  • Niu J, Cui B, Jin H, et al. Effect of post-weld aging temperature on microstructure and mechanical properties of weld metal of 15-5 PH stainless steel. J Mater Eng Perform. 2020;29(11):7026–7033. doi:10.1007/s11665-020-05193-y
  • Caballero FG, Roelofs H, Hasler S, et al. Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels. Mater Sci Technol. 2012;28(1):95–102. doi:10.1179/1743284710Y.0000000047
  • Andersson J-O, Helander T, Höglund L, et al. Thermo-Calc & DICTRA, computational tools for materials science. Calphad. 2002;26(2):273–312. doi:10.1016/S0364-5916(02)00037-8
  • Tang X. Sigma phase characterization in AISI 316 stainless steel. Microsc Microanal. 2005;11(S02):78–79. doi:10.1017/S143192760550374X
  • Bhadeshia HKDH. Bainite in steels: Theory and practice. London: Maney Publishing; 2015.
  • Zhang Y, Liu JP, Chen SY, et al. Serration and noise behaviors in materials. Prog Mater Sci. 2017;90:358–460. doi:10.1016/j.pmatsci.2017.06.004
  • Zhang W, Wang X, Hu Y, et al. Quantitative studies of machining-induced microstructure alteration and plastic deformation in AISI 316 stainless steel using EBSD. J Mater Eng Perform. 2018;27(2):434–446. doi:10.1007/s11665-018-3129-9
  • Byun TS. On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Mater. 2003;51(11):3063–3071. doi:10.1016/S1359-6454(03)00117-4
  • Byun TS, Lee EH, Hunn JD. Plastic deformation in 316LN stainless steel – characterization of deformation microstructures. J Nucl Mater. 2003;321(1):29–39. doi:10.1016/S0022-3115(03)00195-8
  • Zhai W, Zhou W, Nai SML. Grain refinement and strengthening of 316L stainless steel through addition of TiC nanoparticles and selective laser melting. Mater Sci Eng A. 2022;832:142460. doi:10.1016/j.msea.2021.142460
  • Wang X, Muñiz-Lerma JA, Attarian Shandiz M, et al. Crystallographic-orientation-dependent tensile behaviours of stainless steel 316L fabricated by laser powder bed fusion. Mater Sci Eng A. 2019;766:138395. doi:10.1016/j.msea.2019.138395
  • Zhong Y, Liu L, Zou J, et al. Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting. J Mater Sci Technol. 2020;42:97–105. doi:10.1016/j.jmst.2019.11.004
  • Liu L, Ding Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Mater Today. 2018;21(4):354–361. doi:10.1016/j.mattod.2017.11.004
  • Yin YJ, Sun JQ, Guo J, et al. Mechanism of high yield strength and yield ratio of 316L stainless steel by additive manufacturing. Mater Sci Eng A. 2019;744:773–777. doi:10.1016/j.msea.2018.12.092
  • Voisin T, Forien J-B, Perron A, et al. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion. Acta Mater. 2021;203:116476. doi:10.1016/j.actamat.2020.11.018
  • Clare AT, Mishra RS, Merklein M, et al. Alloy design and adaptation for additive manufacture. J Mater Process Technol. 2022;299:117358. doi:10.1016/j.jmatprotec.2021.117358
  • Zhai W, Zhou W, Nai SML. Grain refinement of 316L stainless steel through in-situ alloying with Ti in additive manufacturing. Mater Sci Eng A. 2022;840:142912. doi:10.1016/j.msea.2022.142912
  • Xiong Z, Pang X, Liu S, et al. Hierarchical refinement of nickel-microalloyed titanium during additive manufacturing. Scr Mater. 2021;195:113727. doi:10.1016/j.scriptamat.2021.113727
  • Sui S, Chew Y, Weng F, et al. Achieving grain refinement and ultrahigh yield strength in laser aided additive manufacturing of Ti−6Al−4V alloy by trace Ni addition. Virtual Phys Prototyp. 2021;16(4):417–427. doi:10.1080/17452759.2021.1949091
  • Wei S, Lau KB, Lee JJ, et al. Selective laser melting of Fe–Al alloys with simultaneous gradients in composition and microstructure. Mater Sci Eng A. 2021;821:141608. doi:10.1016/j.msea.2021.141608
  • Wen Y, Zhang B, Narayan RL, et al. Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718. Addit Manuf. 2021;40:101926. doi:10.1016/j.addma.2021.101926
  • Shen Q, Kong X, Chen X. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties. J Mater Sci Technol. 2021;74:136–142. doi:10.1016/j.jmst.2020.10.037
  • Wang L, Shen C, Zhang Y, et al. Effect of Al content on the microstructure and mechanical properties of γ-TiAl alloy fabricated by twin-wire plasma arc additive manufacturing system. Mater Sci Eng A. 2021;826:142008. doi:10.1016/j.msea.2021.142008