185
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Achieving superior strength-ductility combination in the heterogeneous microstructured Ti64 alloy via multi-eutectoid elements alloying with CoCrFeNiMn during laser powder bed fusion

ORCID Icon, ORCID Icon, , , , & show all
Article: e2375106 | Received 06 May 2024, Accepted 25 Jun 2024, Published online: 12 Jul 2024

References

  • Zang MC, Niu HZ, Liu S, et al. Achieving highly promising strength-ductility synergy of powder bed fusion additively manufactured titanium alloy components at ultra-low temperatures. Addit Manuf. 2023;65:103444. doi:10.1016/j.addma.2023.103444
  • Kaushik HC, Korayem MH, Hadadzadeh A. Determination of α to β phase transformation kinetics in laser-powder bed fused Ti–6Al–2Sn–4Zr–2Mo-0.08 Si and Ti–6Al–4 V alloys. Mater Sci Eng A. 2022;860:144294. doi:10.1016/j.msea.2022.144294
  • Liu S, Shin YC. Additive manufacturing of Ti6Al4 V alloy: A review. Mater Des. 2019;164:107552. doi:10.1016/j.matdes.2018.107552
  • Todaro CJ, Easton MA, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun. 2020;11(1):142. doi:10.1038/s41467-019-13874-z
  • Xiong Y, Zhang F, Dai T, et al. Crystal growth mechanism and mechanical properties of Ti-6Al-4 V alloy during selective laser melting. Mater Charact. 2022;194:112455. doi:10.1016/j.matchar.2022.112455
  • Fang TH, Tao NR. Martensitic transformation dominated tensile plastic deformation of nanograins in a gradient nanostructured 316L stainless steel. Acta Mater. 2023;248:118780. doi:10.1016/j.actamat.2023.118780
  • Zhang C, Liu S, Zhang J, et al. Trifunctional nanoprecipitates ductilize and toughen a strong laminated metastable titanium alloy. Nat Commun. 2023;14(1):1397. doi:10.1038/s41467-023-37155-y
  • Sui S, Chew Y, Weng F, et al. Achieving grain refinement and ultrahigh yield strength in laser aided additive manufacturing of Ti− 6Al− 4 V alloy by trace Ni addition. Virtual Phys Prototyp. 2021;16(4):417–427. doi:10.1080/17452759.2021.1949091
  • Lai MJ, Li T, Raabe D. Ω phase acts as a switch between dislocation channeling and joint twinning-and transformation-induced plasticity in a metastable β titanium alloy. Acta Mater. 2018;151:67–77. doi:10.1016/j.actamat.2018.03.053
  • Zhang T, Huang Z, Yang T, et al. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing. Science. 2021;374(6566):478–482. doi:10.1126/science.abj3770
  • Dong Z, Han C, Zhao Y, et al. Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in zinc fabricated via laser powder bed fusion. Int J Extreme Manuf. 2024;6(4):045003. doi:10.1088/2631-7990/ad3929.
  • Zhang T, Wang D, Wang Y. Novel transformation pathway and heterogeneous precipitate microstructure in Ti-alloys. Acta Mater. 2020;196:409–417. doi:10.1016/j.actamat.2020.06.048
  • Ding R, Yao Y, Sun B, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels. Sci Adv. 2020;6(13):eaay1430. doi:10.1126/sciadv.aay1430
  • An XL, Zhang RM, Wu YX, et al. The role of retained austenite on the stress-strain behaviour of chemically patterned steels. Mater Sci Eng A. 2022;831:142286. doi:10.1016/j.msea.2021.142286
  • Fan J, Zhu L, Lu J, et al. Theory of designing the gradient microstructured metals for overcoming strength-ductility trade-off. Scr Mater. 2020;184:41–45. doi:10.1016/j.scriptamat.2020.03.045
  • Sun F, Zhang J-Y, Marteleur M, et al. A new titanium alloy with a combination of high strength, high strain hardening and improved ductility. Scr Mater. 2015;94:17–20. doi:10.1016/j.scriptamat.2014.09.005
  • Ren L, Xiao W, Ma C, et al. Development of a high strength and high ductility near β-Ti alloy with twinning induced plasticity effect. Scr Mater. 2018;156:47–50. doi:10.1016/j.scriptamat.2018.07.012
  • Mantri SA, Nartu MSKKY, Dasari S, et al. Suppression and reactivation of transformation and twinning induced plasticity in laser powder bed fusion additively manufactured Ti-10V-2Fe-3Al. Addit Manuf. 2021;48:102406. doi:10.1016/j.addma.2021.102406
  • Saito T, Furuta T, Hwang J-H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science. 2003;300(5618):464–467. doi:10.1126/science.1081957
  • Chen M, Van Petegem S, Zou Z, et al. Microstructural engineering of a dual-phase Ti-Al-V-Fe alloy via in situ alloying during laser powder bed fusion. Addit Manuf. 2022;59:103173. doi:10.1016/j.addma.2022.103173
  • Zafari A, Xia K. Superior titanium from hybridised microstructures–A new strategy for future alloys. Scr Mater. 2019;173:61–65. doi:10.1016/j.scriptamat.2019.07.031
  • Huber F, Papke T, Scheitler C, et al. In situ formation of a metastable β-Ti alloy by laser powder bed fusion (L-PBF) of vanadium and iron modified Ti-6Al-4 V. Metals. 2018;8(12):1067. doi:10.3390/met8121067
  • Vrancken B, Thijs L, Kruth J-P, et al. 2014. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting. Acta Mater 68:150–158. doi:10.1016/j.actamat.2014.01.018
  • Nagase T, Hori T, Todai M, et al. Additive manufacturing of dense components in beta-titanium alloys with crystallographic texture from a mixture of pure metallic element powders. Mater Des. 2019;173:107771. doi:10.1016/j.matdes.2019.107771
  • Su J, Jiang F, Tan C, et al. Additive manufacturing of fine-grained high-strength titanium alloy via multi-eutectoid elements alloying. Compos Part B: Eng. 2023;249:110399. doi:10.1016/j.compositesb.2022.110399
  • Hsu W-L, Tsai C-W, Yeh A-C, et al. Clarifying the four core effects of high-entropy materials. Nature Rev Chem. 2024: 471–485. doi:10.1038/s41570-024-00602-5
  • Chen J, Fabijanic D, Zhang T, et al. Deciphering the transformation pathway in laser powder-bed fusion additive manufacturing of Ti-6Al-4 V alloy. Addit Manuf. 2022;58:103041. doi:10.1016/j.addma.2022.103041
  • Yang J, Yu H, Yin J, et al. Formation and control of martensite in Ti-6Al-4 V alloy produced by selective laser melting. Mater Des. 2016;108:308–318. doi:10.1016/j.matdes.2016.06.117
  • Zhang J, Liu Y, Sha G, et al. Designing against phase and property heterogeneities in additively manufactured titanium alloys. Nat Commun. 2022;13(1):4660. doi:10.1038/s41467-022-32446-2
  • Rafi HK, Karthik NV, Gong H, et al. Microstructures and mechanical properties of Ti6Al4 V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform. 2013;22:3872–3883. doi:10.1007/s11665-013-0658-0
  • Vilaro T, Colin C, Bartout J-D. As-fabricated and heat-treated microstructures of the Ti-6Al-4 V alloy processed by selective laser melting. Metall Mater Transact A. 2011;42(10):3190–3199. doi:10.1007/s11661-011-0731-y
  • Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti–6Al–4 V by selective laser melting via in situ martensite decomposition. Acta Mater. 2015;85:74–84. doi:10.1016/j.actamat.2014.11.028
  • Vandenbroucke B, Kruth J. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2007;13(4):196–203. doi:10.1108/13552540710776142
  • Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti-6Al-4 V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyp J. 2010;16(6):450–459. doi:10.1108/13552541011083371
  • Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243(1-2):231–236. doi:10.1016/S0921-5093(97)00806-X
  • de Formanoir C, Martin G, Prima F, et al. Micromechanical behavior and thermal stability of a dual-phase α+ α’titanium alloy produced by additive manufacturing. Acta Mater. 2019;162:149–162. doi:10.1016/j.actamat.2018.09.050
  • de Formanoir C, Michotte S, Rigo O, et al. Electron beam melted Ti–6Al–4V: microstructure, texture and mechanical behavior of the as-built and heat-treated material. Mater Sci Eng A. 2016;652:105–119. doi:10.1016/j.msea.2015.11.052
  • Gong H, Rafi K, Gu H, et al. Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting. Mater Des. 2015;86:545–554. doi:10.1016/j.matdes.2015.07.147
  • Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti–6Al–4 V. Mater Sci Eng A. 2014;598:327–337. doi:10.1016/j.msea.2014.01.041
  • Qiu C, Adkins NJ, Attallah MM. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4 V. Mater Sci Eng A. 2013;578:230–239. doi:10.1016/j.msea.2013.04.099
  • Shunmugavel M, Polishetty A, Littlefair G. Microstructure and mechanical properties of wrought and additive manufactured Ti-6Al-4 V cylindrical bars. Procedia Technol. 2015;20:231–236. doi:10.1016/j.protcy.2015.07.037
  • Gou J, Wang Z, Hu S, et al. Effects of trace Nb addition on microstructure and properties of Ti–6Al–4 V thin-wall structure prepared via cold metal transfer additive manufacturing. J Alloys Compd. 2020;829:154481. doi:10.1016/j.jallcom.2020.154481
  • Madikizela C, Cornish LA, Chown LH, et al. Microstructure and mechanical properties of selective laser melted Ti-3Al-8V-6Cr-4Zr-4Mo compared to Ti-6Al-4 V. Mater Sci Eng A. 2019;747:225–231. doi:10.1016/j.msea.2018.12.100
  • Schwab H, Palm F, Kühn U, et al. Microstructure and mechanical properties of the near-beta titanium alloy Ti-5553 processed by selective laser melting. Mater Des. 2016;105:75–80. doi:10.1016/j.matdes.2016.04.103
  • Wang YM, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater. 2018;17(1):63–71. doi:10.1038/nmat5021
  • Keller T, Lindwall G, Ghosh S, et al. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater. 2017;139:244–253. doi:10.1016/j.actamat.2017.05.003
  • Tekumalla S, Seita M, Zaefferer S. Delineating dislocation structures and residual stresses in additively manufactured alloys. Acta Mater. 2024;262:119413. doi:10.1016/j.actamat.2023.119413
  • Shoji Aota L, Bajaj P, Sandim HRZ, et al. Laser powder-bed fusion as an alloy development tool: parameter selection for in-situ alloying using elemental powders. Materials. 2020;13(18):3922. doi:10.3390/ma13183922
  • Owen LR, Pickering EJ, Playford HY, et al. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2017;122:11–18. doi:10.1016/j.actamat.2016.09.032
  • Wang CH, Russell AM, Cao GH. A semi-empirical approach to the prediction of deformation behaviors of β-Ti alloys. Scr Mater. 2019;158:62–65. doi:10.1016/j.scriptamat.2018.08.035
  • Wong K-K, Hsu H-C, Wu S-C, et al. A review: design from beta titanium alloys to medium-entropy alloys for biomedical applications. Materials. 2023;16(21):7046. doi:10.3390/ma16217046
  • Wang J, Zhang B, Yu Y, et al. Ti content effect on microstructure and mechanical properties of plasma-cladded CoCrFeMnNiTix high-entropy alloy coatings. Surf Topogr: Metrol Proper. 2020;8(1):015004. doi:10.1088/2051-672X/ab615b
  • Wang J, Zhang B, Yu Y, et al. Study of high temperature friction and wear performance of (CoCrFeMnNi) 85Ti15 high-entropy alloy coating prepared by plasma cladding. Surf Coat Technol. 2020;384:125337. doi:10.1016/j.surfcoat.2020.125337
  • Zhang Y, Zhou YJ, Lin JP, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10(6):534–538. doi:10.1002/adem.200700240
  • Zhang Y, Lu ZP, Ma SG, et al. Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 2014;4(2):57–62. doi:10.1557/mrc.2014.11
  • Ahmed FF, Clark SJ, Leung CLA, et al. Achieving homogeneity in a high-Fe β-Ti alloy laser-printed from blended elemental powders. Mater Des. 2021;210:110072. doi:10.1016/j.matdes.2021.110072
  • Zhang T, Li H, Liu S, et al. Evolution of molten pool during selective laser melting of Ti–6Al–4 V. J Phys D: Appl Phys. 2018;52(5):055302. doi:10.1088/1361-6463/aaee04
  • Kang N, Lin X, Coddet C, et al. Selective laser melting of low modulus Ti-Mo alloy: α/β heterogeneous conchoidal structure. Mater Lett. 2020;267:127544. doi:10.1016/j.matlet.2020.127544