53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The impact of coaxial gas technology on the morphology of powder by gas atomisation and the additive manufactured mechanical performance

, ORCID Icon, , , , , , , & ORCID Icon show all
Article: e2375107 | Received 09 Apr 2024, Accepted 25 Jun 2024, Published online: 22 Jul 2024

References

  • Khorasani M, Gibson I, Ghasemi AH, et al. Laser subtractive and laser powder bed fusion of metals: review of process and production features. Rapid Prototyping J. 2023;29(5):935–958. doi:10.1108/RPJ-03-2021-0055
  • Sun X, Chen M, Liu T, et al. Characterization, preparation, and reuse of metallic powders for laser powder bed fusion: a review. Int J Extreme Manuf. 2023;6(1).
  • Rasiya G, Shukla A, Saran K. Additive manufacturing-a review. Mater Today Proc. 2021;47:6896–6901.
  • Wallner S. Powder production technologies. BHM Berg- Huttenmann Monatsh. 2019;164(3):108–111.
  • Mandal S, Sadeghianjahromi A, Wang C-C. Experimental and numerical investigations on molten metal atomization techniques – A critical review. Adv Powder Technol. 2022;33(11).
  • Kassym K, Perveen A. Atomization processes of metal powders for 3D printing. Mater Today Proc. 2020;26:1727–1733.
  • Wei M, Chen S, Sun M, et al. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure. Powder Technol. 2020;367:724–739. doi:10.1016/j.powtec.2020.04.030
  • Aksoy A, Ünal R. Effects of gas pressure and protrusion length of melt delivery tube on powder size and powder morphology of nitrogen gas atomised tin powders. Powder Metall. 2006;49(4):349–354. doi:10.1179/174329006X89425
  • Özbilen S, Ünal A, Sheppard T. Influence of superheat on particle shape and size of gas atomised copper powders. Powder Metall. 1991;34(1):53–61. doi:10.1179/pom.1991.34.1.53
  • K. Zhou, C. Han, Metal Powder Based Additive Manufacturing, Weinheim: WILEY-VCH GmbH, 2023.
  • Attar H, Prashanth KG, Zhang L-C, et al. Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting. J Mater Sci Technol. 2015;31(10):1001–1005. doi:10.1016/j.jmst.2015.08.007
  • Fu X, Huck D, Makein L, et al. Effect of particle shape and size on flow properties of lactose powders. Particuology. 2012;10(2):203–208. doi:10.1016/j.partic.2011.11.003
  • Gao X, Abreu Faria G, Zhang W, et al. Numerical analysis of non-spherical particle effect on molten pool dynamics in laser-powder bed fusion additive manufacturing. Comput Mater Sci. 2020;179:109648.
  • Dong Z, Han C, Zhao Y, et al. Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in zinc fabricated via laser powder bed fusion. Int J Extreme Manuf. 2024;6:045003.
  • Liu Y, Sing SL. A review of advances in additive manufacturing and the integration of high-performance polymers, alloys, and their composites. Mat Sci Addit Manufact. 2023;2:1587.
  • Rao, J, Sing SL, Lim, JCW, et al. Detection and characterisation of defects in directed energy deposited multi-material components using full waveform inversion and reverse time migration. Virtual Phys Prototyping. 2022;17(4):1047–1057.
  • Savinov R, Wang Y, Shi J. An exploratory study on biocompatible Ti-6Mn-4Mo alloy manufactured by directed energy deposition. Mat Sci Addit Manufact. 2023;2(4). doi:10.36922/msam.2180
  • Bidare P, Bitharas I, Ward RM, et al. Fluid and particle dynamics in laser powder bed fusion. Acta Mater. 2018;142:107–120. doi:10.1016/j.actamat.2017.09.051
  • Chen Y, Clark S, Leung ACL, et al. Melt pool morphology in directed energy deposition additive manufacturing process. IOP Conf Ser Mater Sci Eng. 2020;861:012012.
  • Chu F, Shen H, Liu J, et al. Improved ductility by reducing powder size in laser powder bed fusion of AlSi10Mg. Addit Manufact Front. 2024.
  • Xue P, Zhu L, Xu P, et al. Effect of heat treatment on microstructure and mechanical properties of in-situ synthesized Ni2CrCoNb0.16 multi-principal element alloy manufactured by directed energy deposition. Mat Sci Eng A. 2023;862.
  • Allimant A, Planche MP, Bailly Y, et al. Progress in gas atomization of liquid metals by means of a De Laval nozzle. Powder Technol. 2009;190(1-2):79–83. doi:10.1016/j.powtec.2008.04.071
  • Beckers D, Ellendt N, Fritsching U, et al. Impact of process flow conditions on particle morphology in metal powder production via gas atomization. Adv Powder Technol. 2020;31(1):300–311. doi:10.1016/j.apt.2019.10.022
  • Wu J, Xia M, Guo S, et al. Effect of electrode induction melting gas atomization process on fine powder yields: diameter of free-fall gas atomizer. J Mater Eng Perform. 2022;32:1–11.
  • Luo S, Wang H, Gao Z, et al. Interaction between high-velocity gas and liquid in gas atomization revealed by a new coupled simulation model. Mater Des. 2021;212:1–12.
  • Wu J, Xia M, Wang J, et al. Effect of electrode induction melting gas atomization on powder quality: satellite formation mechanism and pressure. Materials (Basel). 2023;16:2499.
  • Luo S, Ouyang Y, Lai S, et al. 3D numerical modeling of gas atomization process for powder preparation based on similarity theory. Powder Technol. 2024;433:119244.
  • Bartzsch G, Scherbring S, Richter J, et al. Gas atomization of Al-steels. Mater Today Commun. 2023;34:105388.
  • Chen H, Chen Y, Liu Y, et al. Packing quality of powder layer during counter-rolling-type powder spreading process in additive manufacturing. Int J Mach Tools Manuf. 2020;153. doi:10.1016/j.ijmachtools.2020.103553
  • Zhai W, Zhou W, Nai SML, et al. Characterization of nanoparticle mixed 316 L powder for additive manufacturing. J Mater Sci Technol. 2020;47:162–168. doi:10.1016/j.jmst.2020.02.019
  • Chen H, Wei Q, Wen S, et al. Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method. Int J Mach Tools Manuf. 2017;123:146–159. doi:10.1016/j.ijmachtools.2017.08.004
  • Chen G, Zhao SY, Tan P, et al. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol. 2018;333:38–46. doi:10.1016/j.powtec.2018.04.013
  • Ouyang Y, Luo S, Ren P, et al. Synchrotron X-ray computed tomography analysis of the morphological characterization of aluminum alloy powders produced by gas atomization. Powder Technol. 2023;429. doi:10.1016/j.powtec.2023.118904
  • Richter J, Torrent CJJ, Krochmal M, et al. A comparative study using water atomized and gas atomized powder in laser powder bed fusion – Assessment of the fatigue performance. Int J Fatigue. 2023;168. doi:10.1016/j.ijfatigue.2022.107468
  • Wang P, Zhou X-L, Li X-G, et al. Yu, Numerical and experimental investigation of close-coupled twin-nozzle gas atomization towards fine high-entropy alloy powder production. J Mater Process Technol. 2024;324:118238.
  • Xiao YK, Bian ZY, Wu Y, et al. Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy processed by selective laser melting. J Alloys Compd. 2019;798:644–655. doi:10.1016/j.jallcom.2019.05.279
  • Chen X, Yang V. Bouncing, helical and buckling instabilities during droplet collision: newtonian and non-newtonian liquids. ArXiv. 2012. Accessed July 5, 2024. /abs/1210.3888.
  • Luo S. Classification of powders. 2024. https://github.com/Roshan-sjtu/classification-of-powders.
  • Poudel A, Yasin MS, Ye J, et al. Feature-based volumetric defect classification in metal additive manufacturing. Nat Commun. 2022;13(1):6369.
  • Zhang K, Chen Y, Marussi S, et al.  Pore evolution mechanisms during directed energy deposition additive manufacturing. Nat Commun. 2020;106(1):89–100. doi:10.3917/commu.106.0089
  • Huang Y, Fleming TG, Clark SJ, et al. Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing. Nat Commun. 2022;13:1–11.
  • Iebba M, Astarita A, Mistretta D, et al. Influence of Powder characteristics on formation of porosity in additive manufacturing of Ti-6Al-4V components. J Mater Eng Perform. 2017;26(8):4138–4147. doi:10.1007/s11665-017-2796-2
  • Kenevisi MS, Lin F. Effect of powder characteristics on relative density and porosity formation during electron beam selective melting of Al2024 aluminum alloy. J Manuf Sci Eng. 2023;145(5). doi:10.1115/1.4056665
  • Zhang Y, Lordan E, Dou K, et al. Influence of porosity characteristics on the variability in mechanical properties of high pressure die casting (HPDC) AlSi7MgMn alloys. J Manuf Processes. 2020;56:500–509. doi:10.1016/j.jmapro.2020.04.071