68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure evolution and mechanical properties of Q690D steel repaired by wire based laser directed energy deposition

, , , , , & show all
Article: e2375108 | Received 06 Feb 2024, Accepted 25 Jun 2024, Published online: 22 Jul 2024

References

  • Yan JB, Yang X, Luo Y, et al. Axial compression behaviours of ultra-high performance concrete-filled Q690 high-strength steel tubes at low temperatures. Thin Wall Struct. 2021;169(108419):1–20. doi:10.1016/j.tws.2021.108419
  • Cadoni E, Briccola D, Dotta M, et al. Combined effect of elevated temperature and high strain rates on S690QL high strength steel. J Constr Steel Res. 2022;199(107519):1–13. doi:10.1016/j.jcsr.2022.107519
  • Tong L, Niu L, Ren Z, et al. Experimental investigation on fatigue behavior of butt-welded high-strength steel plates. Thin Wall Struct. 2021;165(107956):1–11. doi:10.1016/j.tws.2021.107956
  • Schroepfer D, Kannengiesser T. Correlating welding reaction stresses and weld process conditions for high-strength steel S960QL. Weld World. 2014;58:423–432. doi:10.1007/s40194-014-0127-x
  • Huang X, Ge J, Zhao J, et al. A continuous damage model of Q690D steel considering the influence of Lode parameter and its application. Constr Build Mater. 2020;262(120067):1–16. doi:10.1016/j.conbuildmat.2020.120067
  • Guo H, Lei T, Yu J, et al. Experimental study on mechanical properties of Q690 high strength steel in marine corrosive environment. Int J Steel Struct. 2021;21(2):717–730. doi:10.1007/s13296-021-00468-z
  • Saboori A, Aversa A, Marchese G, et al. Application of directed energy deposition-based additive manufacturing in repair. Appl Sci. 2019;3316(9):1–26. doi:10.3390/app9163316
  • Lopes J, Agrawal P, Shen J, et al. Evolution of microstructure and mechanical properties in gas tungsten arc welded dual-phase Fe50Mn30Co10Cr10 high entropy alloy. Mater Sci Eng A. 2023;878(145233):1–15. doi:10.1016/j.msea.2023.145233
  • Shen J, Agrawal P, Rodrigues T, et al. Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloy. Mater Sci Eng A. 2023;867(144722):1–13. doi:10.1016/j.msea.2023.144722
  • Deirmina F, AlMangour B, Grzesiak D, et al. H13–partially stabilized zirconia nanocomposites fabricated by high-energy mechanical milling and selective laser melting. Mater Des. 2018;146:286–297. doi:10.1016/j.matdes.2018.03.017
  • Seede R, Shoukr D, Zhang B, et al. An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties. Acta Mater. 2020;186:199–214. doi:10.1016/j.actamat.2019.12.037
  • Deirmina F, Peghini N, AlMangour B, et al. Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing. Mater Sci Eng A. 2019;753:109–121. doi:10.1016/j.msea.2019.03.027
  • AlMangour B, Grzesiak D, Yang JM. Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting. Mater Des. 2016;96:150–161. doi:10.1016/j.matdes.2016.02.022
  • Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271–295. doi:10.1016/j.mattod.2021.03.020
  • Molina C, Araujo A, Bell K, et al. Fatigue life of laser additive manufacturing repaired steel component. Eng Fract Mech. 2021;241(107417):1–11. doi:10.1016/j.engfracmech.2020.107417
  • Zhang S, Hou P, Kang J, et al. Laser additive manufacturing for infrastructure repair: a case study of a deteriorated steel bridge beam. J Mater Sci Technol. 2023;154:149–158. doi:10.1016/j.jmst.2023.01.018
  • Oh WJ, Lee WJ, Kim MS, et al. Repairing additive-manufactured 316L stainless steel using direct energy deposition. Opt Laser Technol. 2019;117:6–17. doi:10.1016/j.optlastec.2019.04.012
  • Zhu J, Li L, Li D, et al. Microstructural evolution and mechanical properties of laser repaired 12Cr12Mo stainless steel. Mater Sci Eng A. 2022;830(142292):1–13. doi:10.1016/j.msea.2021.142292
  • Chen M, Yang K, Wang Z, et al. Underwater laser directed energy deposition of NV E690 steel. Adv Powder Technol. 2023;2(100095):1–8. doi:10.1016/j.apmate.2022.100095
  • Wang ZD, Yang K, Chen MZ, et al. High-quality remanufacturing of HSLA-100 steel through the underwater laser directed energy deposition in an underwater hyperbaric environment. Surf Coat Technol. 2022;437(128370):1–15. doi:10.1016/j.surfcoat.2022.128370
  • Wang ZD, Yang K, Chen MZ, et al. Investigation of the microstructure and mechanical properties of Ti–6Al–4V repaired by the powder-blown underwater directed energy deposition technique. Mater Sci Eng A. 2022;831(142186):1–17. doi:10.1016/j.msea.2021.142186
  • Özel T, Shokri H, Loizeau R. A review on wire-fed directed energy deposition based metal additive manufacturing. J Manuf Mater Process. 2023;7(45):1–24. doi:10.3390/jmmp7010045
  • Felice I, Shen J, Barragan A, et al. Wire and arc additive manufacturing of Fe-based shape memory alloys: microstructure, mechanical and functional behavior. Mater Des. 2023;231(112004):1–15. doi:10.1016/j.matdes.2023.112004
  • Fariasa FWC, Duartea VR, Filho JCP, et al. Arc-based directed energy deposited Inconel 718: role of heat treatments on high-temperature tensile behavior. Mater Res Lett. 2024;12(2):97–107. doi:10.1080/21663831.2023.2297734
  • Ding D, Pan Z, Cuiuri D, et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol. 2015;81:465–481. doi:10.1007/s00170-015-7077-3
  • Moghimian P, Poirié T, Korayem MH, et al. Metal powders in additive manufacturing: a review on reusability and recyclability of common titanium, nickel and aluminum alloys. Addit Manuf. 2021;43(102017):1–14. doi:10.1016/j.addma.2021.102017
  • Syed WUH, Pinkerton AJ, Li L. Combining wire and coaxial powder feeding in laser direct metal deposition for rapid prototyping. Appl Surf Sci. 2006;252(13):4803–4808. doi:10.1016/j.apsusc.2005.08.118
  • Wainwright J, Williams S, Ding J. Refinement of Ti-6Al-4V prior-β grain structure in the as-deposited condition via process control during wire-direct energy deposition. Addit Manuf. 2023;74:1–13. doi:10.1016/j.addma.2023.103712
  • Rodrigues TA, Farias FWC, Zhang K, et al. Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material: development and characterization. J Mater Res Technol. 2022;21:237–251. doi:10.1016/j.jmrt.2022.08.169
  • Naksuk N, Poolperm P, Nakngoenthong J, et al. Experimental investigation of hot-wire laser deposition for the additive manufacturing of titanium parts. Mater Res Express. 2022;9:056515. doi:10.1088/2053-1591/ac6ec2
  • Huang W, Chen S, Xiao J, et al. Laser wire-feed metal additive manufacturing of the Al alloy. Opt Laser Technol. 2021;134:1–9. doi:10.1016/j.optlastec.2020.106627
  • Abuabiah M, Mbodj NG, Shaqour B, et al. Advancements in laser wire-feed metal additive manufacturing: a brief review. Materials (Basel). 2023;16:2030. doi:10.3390/ma16052030
  • Wen P, Wang G, Chen Y. Effect of laser scanning and powder addition on microstructure and mechanical properties for hot-wire-feed laser additive manufacturing. J Laser Appl. 2017;29:022302. doi:10.2351/1.4983238
  • Shrestha S, Panakarajupally RP, Kannan M, et al. Analysis of microstructure and mechanical properties of additive repaired Ti–6Al–4V by direct energy deposition. Mater Sci Eng A. 2021;806:140604. doi:10.1016/j.msea.2020.140604
  • Fu Y, Guo N, Wang G, et al. Underwater additive manufacturing of Ti-6Al-4V alloy by laser metal deposition: formability, gran growth and microstructure evolution. Mater Des. 2021;197:1–13. doi:10.1016/j.matdes.2020.109196
  • Fu Y, Guo N, Zhou C, et al. Investigation on in-situ laser cladding coating of the 304 stainless steel in water environment. J Mater Process Technol. 2021;289:1–10. doi:10.1016/j.jmatprotec.2020.116949
  • Cheng Q, Guo N, Fu Y, et al. Investigation on in-situ laser cladding 5356 aluminum alloy coating on 5052 aluminum alloy substrate in water environment. J Mater Res Technol. 2021;15:4343–4352. doi:10.1016/j.jmrt.2021.10.073
  • Guo W, Crowther D, Francis JA, et al. Microstructure and mechanical properties of laser welded S960 high strength steel. Mater Des. 2015;85:534–548. doi:10.1016/j.matdes.2015.07.037
  • Onuike B, Bandyopadhyay A. Additive manufacturing in repair: influence of processing parameters on properties of Inconel 718. Mater Lett. 2019;252:256–259. doi:10.1016/j.matlet.2019.05.114
  • Guo W, Li L, Dong S, et al. Comparison of microstructure and mechanical properties of ultra-narrow gap laser and gas-metal-arc welded S960 high strength steel. Opt Lasers Eng. 2017;91:1–15. doi:10.1016/j.optlaseng.2016.11.011
  • Sun SD, Liu Q, Brandt M, et al. Effect of laser clad repair on the fatigue behaviour of ultra-high strength AISI 4340 steel. Mater Sci Eng A. 2014;606:46–57. doi:10.1016/j.msea.2014.03.077
  • Bhattacharya S, Dinda GP, Dasgupta AK, et al. Microstructural evolution of AISI 4340 steel during direct metal deposition process. Mater Sci Eng A. 2011;528(6):2309–2318. doi:10.1016/j.msea.2010.11.036
  • Kwak K, Mayama T, Mine Y, et al. Anisotropy of strength and plasticity in lath martensite steel. Mater Sci Eng A. 2016;674:104–116. doi:10.1016/j.msea.2016.07.047
  • Kürnsteiner P, Wilms MB, Weisheit A, et al. High-strength Damascus steel by additive manufacturing. Nature. 2020;582:515–519. doi:10.1038/s41586-020-2409-3
  • Poorhaydari K, Patchett BM, Ivey DG. Transformation twins in the weld HAZ of a low-carbon high-strength microalloyed steel. Mater Sci Eng A. 2006;435–436:371–382. doi:10.1016/j.msea.2006.07.055
  • Li S, Li L, Soulami A, et al. In-situobservation of deformation twin associated sub-grain boundary formationin copper single crystal under bending. Mater Res Lett. 2022;10(7):488–495. doi:10.1080/21663831.2022.2057201
  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 2013;61(3):782–817. doi:10.1016/j.actamat.2012.10.038
  • Du C, Gao Y, Zha M, et al. Deformation-induced grain rotation and grain boundary formation achieved through dislocation-disclination reactions in polycrystalline hexagonal close-packed metals. Acta Mater. 2023;250(118855):1–19. doi:10.1016/j.actamat.2023.118855
  • Wang ZD, Sun GF, Chen MZ, et al. Investigation of the underwater laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance. Addit Manuf. 2021;39:1–16. doi:10.1016/j.addma.2021.101884
  • Bertoli US, Guss G, Wu S, et al. In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater Des. 2017;135:385–396. doi:10.1016/j.matdes.2017.09.044
  • Zhou Y, Chen S, Chen X, et al. The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2 alloy steel at different laser power. Mater Sci Eng A. 2019;742:150–161. doi:10.1016/j.msea.2018.10.092
  • Li S, Guo C, Hao L, et al. In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests. Mater Sci Eng A. 2019;759:624–632. doi:10.1016/j.msea.2019.05.083
  • Liu Q, Fang L, Xiong Z, et al. The response of dislocations, low angle grain boundaries and high angle grain boundaries at high strain rates. Mater Sci Eng A. 2021;822(141704):1–10. doi:10.1016/j.msea.2021.141704
  • Pintaude G. Hardness as an indicator of material strength: a critical review. Crit Rev Solid State Mater Sci. 2023;48:623–641. doi:10.1080/10408436.2022.2085659
  • Nayaka SS, Hernandez VHB, Okitaa Y, et al. Microstructure–hardness relationship in the fusion zone of TRIP steel welds. Mater Sci Eng A. 2012;551:73–81. doi:10.1016/j.msea.2012.04.096
  • Lee JH, Park SH, Kwon HS, et al. Laser, tungsten inert gas, and metal active gas welding of DP780 steel: comparison of hardness, tensile properties and fatigue resistance. Mater Des. 2014;64:559–565. doi:10.1016/j.matdes.2014.07.065
  • Jiang Z, Ren L, Huang J, et al. Microstructure and mechanical properties of the TIG welded joints of fusion CLAM steel. Fusion Eng Des. 2010;85:1903–1908. doi:10.1016/j.fusengdes.2010.06.019
  • Zhang J, Liu H, Chen X, et al. Deformation characterization, twinning behavior and mechanical properties of dissimilar friction–stir–welded AM60/AZ31 alloys joint during the three-point bending. Acta Metall Sin. 2022;35:727–744. doi:10.1007/s40195-021-01313-2
  • EN ISO 16834: 2012. Welding consumables-wire electrodes, wires, rods and deposits for gas-shielded arc welding of high strength steels-classification. Brussels: CEN; 2012.