37
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review of micro and nano scale 3D printing of electromagnetic metamaterial absorbers: mechanism, fabrication, and functionality

, , , , , , & show all
Article: e2378937 | Received 24 Apr 2024, Accepted 05 Jul 2024, Published online: 22 Jul 2024

References

  • Alitalo P, Tretyakov S. Electromagnetic cloaking with metamaterials. Mater Today. 2009;12(3):22–29. doi:10.1016/S1369-7021(09)70072-0
  • Zheludev NI. The road ahead for metamaterials. Science. 2010;328(5978):582–583. doi:10.1126/science.1186756
  • Cummer SA, Christensen J, Alu A. Controlling sound with acoustic metamaterials. Nat Rev Mater. 2016;1(3). doi:10.1038/natrevmats.2016.1
  • Kadic M, Milton GW, van Hecke M, et al. 3D metamaterials. Nat Rev Phys. 2019;1(3):198–210. doi:10.1038/s42254-018-0018-y
  • Ma G, Sheng P. Acoustic metamaterials: from local resonances to broad horizons. Sci Adv. 2016;2(2). doi:10.1126/sciadv.1501595
  • Yu P, Besteiro LV, Huang Y, et al. Broadband metamaterial absorbers. Adv Opt Mater. 2019;7(3). doi:10.1002/adom.201800995
  • Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science. 2004;305(5685):788–792. doi:10.1126/science.1096796
  • Zhang S, Park Y-S, Li J, et al. Negative refractive index in chiral metamaterials. Phys Rev Lett. 2009;102(2). doi:10.1103/PhysRevLett.102.023901
  • Huang C, Chen L. Negative poisson's ratio in modern functional materials. Adv Mater. 2016;28(37):8079–8096. doi:10.1002/adma.201601363
  • Yasuda H, Yang J. Reentrant origami-based metamaterials with negative poisson's ratio and bistability. Phys Rev Lett. 2015;114(18). doi:10.1103/PhysRevLett.114.185502
  • Chen J, Wang Y, Jia B, et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies. Nat Photonics. 2011;5(4):239–242. doi:10.1038/nphoton.2011.17
  • Seddon N, Bearpark T. Observation of the inverse Doppler effect. Science. 2003;302(5650):1537–1540. doi:10.1126/science.1089342
  • Lu J, Grzegorczyk TM, Zhang Y, et al. Cerenkov radiation in materials with negative permittivity and permeability. Opt Express. 2003;11(7):723–734. doi:10.1364/OE.11.000723
  • Duan Z, Tang X, Wang Z, et al. Observation of the reversed Cherenkov radiation. Nat Commun. 2017;8(1):14901. doi:10.1038/ncomms14901
  • Viktor GV. The electrodynamics of substances with simultaneously negative values of and μ. Sov Phys Usp. 1968;10(4):509. doi:10.1070/PU1968v010n04ABEH003699
  • Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett. 1987;58(20):2059–2062. doi:10.1103/PhysRevLett.58.2059
  • John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett. 1987;58(23):2486–2489. doi:10.1103/PhysRevLett.58.2486
  • Noda S, Tomoda K, Yamamoto N, et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. 2000;289(5479):604–606. doi:10.1126/science.289.5479.604
  • Kushwaha MS, Halevi P, Dobrzynski L, et al. Acoustic band structure of periodic elastic composites. Phys Rev Lett. 1993;71(13):2022–2025. doi:10.1103/PhysRevLett.71.2022
  • Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials. Science. 2000;289(5485):1734–1736. doi:10.1126/science.289.5485.1734
  • Lakes R. Foam structures with a negative poisson's ratio. Science (New York, NY). 1987;235(4792):1038–1040. doi:10.1126/science.235.4792.1038
  • Lakes R. Cellular solid structures with unbounded thermal expansion. J Mater Sci Lett. 1996;15(6):475–477. doi:10.1007/BF00275406
  • Pendry JB, Holden AJ, Robbins DJ, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech. 1999;47(11):2075–2084. doi:10.1109/22.798002
  • Pendry JB, Holden AJ, Stewart WJ, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett. 1996;76(25):4773–4776. doi:10.1103/PhysRevLett.76.4773
  • Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292(5514):77–79. doi:10.1126/science.1058847
  • Smith DR, Padilla WJ, Vier DC, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184–4187. doi:10.1103/PhysRevLett.84.4184
  • Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 2006;312(5781):1780–1782. doi:10.1126/science.1125907
  • Leonhardt U. Optical conformal mapping. Science. 2006;312(5781):1777–1780. doi:10.1126/science.1126493
  • Schittny R, Kadic M, Guenneau S, et al. Experiments on transformation thermodynamics: molding the flow of heat. Phys Rev Lett. 2013;110(19). doi:10.1103/PhysRevLett.110.195901
  • Fan CZ, Gao Y, Huang JP. Shaped graded materials with an apparent negative thermal conductivity. Appl Phys Lett. 2008;92(25). doi:10.1063/1.2951600
  • Ma Y, Lan L, Jiang W, et al. A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity. NPG Asia Mater. 2013;5(11):e73. doi:10.1038/am.2013.60
  • Gu S, Su B, Zhao XP. Planar isotropic broadband metamaterial absorber. J Appl Phys. 2013;114(16). doi:10.1063/1.4826911
  • Shen Y, Zhang J, Pang Y, et al. Thermally tunable ultra-wideband metamaterial absorbers based on three-dimensional water-substrate construction. Sci Rep. 2018;8(1):4423. doi:10.1038/s41598-018-22163-6
  • Zhang M, Song Z. Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration. Opt Express. 2020;28(8):11780–8. doi:10.1364/OE.391891
  • Chen F, Lei DY. Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials. Sci Rep. 2015;5. doi:10.1038/srep11552
  • Ma Y, Liu Y, Raza M, et al. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys Rev Lett. 2014;113(20). doi:10.1103/PhysRevLett.113.205501
  • Peng Y-G, Li Y, Cao P-C, et al. 3D printed meta-helmet for wide-angle thermal camouflages. Adv Funct Mater. 2020;30(28). doi:10.1002/adfm.202002061
  • Xie B, Tang K, Cheng H, et al. Coding acoustic metasurfaces. Adv Mater. 2017;29(6). doi:10.1002/adma.201603507
  • Zhang S, Xia C, Fang N. Broadband acoustic cloak for ultrasound waves. Phys Rev Lett. 2011;106(2). doi:10.1103/PhysRevLett.106.024301
  • Zhu J, Christensen J, Jung J, et al. A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat Phys. 2011;7(1):52–55. doi:10.1038/nphys1804
  • Lu D, Kan JJ, Fullerton EE, et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat Nanotechnol. 2014;9(1):48–53. doi:10.1038/nnano.2013.276
  • Englund D, Fattal D, Waks E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett. 2005;95(1). doi:10.1103/PhysRevLett.95.013904
  • Decker M, Staude I, Shishkin II, et al. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials. Nat Commun. 2013;4(1):2949. doi:10.1038/ncomms3949
  • Bauer J, Schroer A, Schwaiger R, et al. Approaching theoretical strength in glassy carbon nanolattices. Nat Mater. 2016;15(4):438–443. doi:10.1038/nmat4561
  • Harris JA, McShane GJ. Metallic stacked origami cellular materials: additive manufacturing,: properties, and modelling. Int J Solids Struct. 2020;185:448–466. doi:10.1016/j.ijsolstr.2019.09.007
  • Zheng X, Smith W, Jackson J, et al. Multiscale metallic metamaterials. Nat Mater. 2016;15(10):1100. doi:10.1038/nmat4694
  • Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 2014;14(6):3510–3514. doi:10.1021/nl501090w
  • Alaee R, Farhat M, Rockstuhl C, et al. A perfect absorber made of a graphene micro-ribbon metamaterial. Opt Express. 2012;20(27):28017–28024. doi:10.1364/OE.20.028017
  • Ziolkowski RW, Jin P, Lin C-C. Metamaterial-inspired engineering of antennas. Proc IEEE. 2011;99(10):1720–1731. doi:10.1109/JPROC.2010.2091610
  • Ourir A, de Lustrac A, Lourtioz JM. All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas. Appl Phys Lett. 2006;88(8). doi:10.1063/1.2172740
  • Dong Y, Itoh T. Metamaterial-based antennas. Proc IEEE. 2012;100(7):2271–2285. doi:10.1109/JPROC.2012.2187631
  • Kundtz N, Smith DR. Extreme-angle broadband metamaterial lens. Nat Mater. 2010;9(2):129–132. doi:10.1038/nmat2610
  • Jiang M, Chen ZN, Zhang Y, et al. Metamaterial-based thin planar lens antenna for spatial beamforming and multibeam massive MIMO. IEEE Trans Antennas Propag. 2017;65(2):464–472. doi:10.1109/TAP.2016.2631589
  • Fan W, Yan B, Wang Z, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies. Sci Adv. 2016;2(8). doi:10.1126/sciadv.1600901
  • Zhu Y, Vegesna S, Zhao Y, et al. Tunable dual-band terahertz metamaterial bandpass filters. Opt Lett. 2013;38(14):2382–2384. doi:10.1364/OL.38.002382
  • Han Z, Kohno K, Fujita H, et al. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. Opt Express. 2014;22(18):21326–21339. doi:10.1364/OE.22.021326
  • Huang T, Wu Z, Yu Q, et al. Preparation of hierarchically porous carbon/magnetic particle composites with broad microwave absorption bandwidth. Chem Eng J. 2019;359:69–78. doi:10.1016/j.cej.2018.11.108
  • Cao M-S, Song W-L, Hou Z-L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon N Y. 2010;48(3):788–796. doi:10.1016/j.carbon.2009.10.028
  • Engheta N. Thin absorbing screens using metamaterial surfaces. Paper presented at the IEEE antennas and propagation society international symposium (IEEE Cat. No.02CH37313), 16–21 Jun 2002; 2002.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20). doi:10.1103/PhysRevLett.100.207402
  • Zhu B, Wang Z-B, Yu Z-Z, et al. Planar metamaterial microwave absorber for all wave polarizations. Chem Phys Lett. 2009;26:11. doi:10.1016/j.cplett.2009.07.034
  • Tao H, Bingham CM, Strikwerda AC, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design,: fabrication, and characterization. Phys Rev B. 2008;78(24). doi:10.1103/PhysRevB.78.241103
  • Zhi Cheng Y, Wang Y, Nie Y, et al. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements. J Appl Phys. 2012;111(4). doi:10.1063/1.3684553
  • Wen Q-Y, Zhang H-W, Xie Y-S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl Phys Lett. 2009;95(24). doi:10.1063/1.3276072
  • Cui Y, Fung KH, Xu J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 2012;12(3):1443–1447. doi:10.1021/nl204118h
  • Tao H, Landy NI, Bingham CM, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express. 2008;16(10):7181–7188. doi:10.1364/OE.16.007181
  • Liu X, Starr T, Starr AF, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys Rev Lett. 2010;104(20). doi:10.1103/PhysRevLett.104.207403
  • Aydin K, Ferry VE, Briggs RM, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun. 2011;2(1). doi:10.1038/ncomms1528
  • Tian H, Zhang L, Zhao Y, et al. Design of broadband metamaterial absorber utilized by flower-shaped unit loaded with lumped-resistor. EPJ Appl Metamat. 2024;11:2. doi:10.1051/epjam/2024002
  • Wu Y, Lin H, Xiong J, et al. A broadband metamaterial absorber design using characteristic modes analysis. J Appl Phys. 2021;129(13):134902. doi:10.1063/5.0043054
  • Deng G, Lv K, Sun H, et al. An ultra-wideband, polarization insensitive metamaterial absorber based on multiple resistive film layers with wide-incident-angle stability. Int J Microwave Wireless Technolog. 2021;13(1):58–66. doi:10.1017/S1759078720000513
  • He L, Xiong C, Xu H, et al. Low-frequency resistive-type metamaterial with broadband absorption by employing screen-printing method. Int J Mod Phys B. 2020;34(31). doi:10.1142/s0217979220502987
  • Chejarla S, Thummaluru SR, Chaudhary RK. Flexible metamaterial absorber with wide incident angle insensitivity for conformal applications. Electron Lett. 2019;55(3):133–134. doi:10.1049/el.2018.7501
  • Liang L, Yang X, Li C, et al. MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv Mater. 2024;36:2313939. doi:10.1002/adma.202313939
  • Liang L, Yu R, Ong SJH, et al. An adaptive multispectral mechano-optical system for multipurpose applications. ACS Nano. 2023;17(13):12409–12421. doi:10.1021/acsnano.3c01836
  • Liang L, Li C, Yang X, et al. Pneumatic structural deformation to enhance resonance behavior for broadband and adaptive radar stealth. Nano Lett. 2024;24(8):2652–2660. doi:10.1021/acs.nanolett.4c00153
  • Zhang Z, Zhao Y, Fan G, et al. Paper-based flexible metamaterial for microwave applications. EPJ Appl Metamat. 2021;8:6. doi:10.1051/epjam/2020016
  • Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B. 2018;143:172–196. doi:10.1016/j.compositesb.2018.02.012
  • Vaezi M, Seitz H, Yang SF. A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol. 2013;67(5-8):1721–1754. doi:10.1007/s00170-012-4605-2
  • Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: a review and prospective. Composites Part B. 2017;110:442–458. doi:10.1016/j.compositesb.2016.11.034
  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014;23(6):1917–1928. doi:10.1007/s11665-014-0958-z
  • Parandoush P, Lin D. A review on additive manufacturing of polymer-fiber composites. Compos Struct. 2017;182:36–53. doi:10.1016/j.compstruct.2017.08.088
  • Chen Z, Li Z, Li J, et al. 3D printing of ceramics: a review. J Eur Ceram Soc. 2019;39(4):661–687. doi:10.1016/j.jeurceramsoc.2018.11.013
  • Fu X, Gu J, Ma M, et al. Unique benefits and challenges of 3D-printed microneedles. 2024. doi:10.36922/ijb.1896
  • Chen Y, Bi S, Gu J, et al. Achieving personalized nutrition for patients with diabetic complications via 3D food printing. 2024. doi:10.36922/ijb.1862
  • Ma M, Gu J, Wang DA, et al. Applications of 3D printing in aging. Int J Bioprint. 2023;9(4):732. doi:10.18063/ijb.732
  • Sun Z, Zeng X, Deng X, et al. Droplet interface in additive manufacturing: from process to application. Droplet. 2023;2(2):e57. doi:10.1002/dro2.57
  • Golhin AP, Tonello R, Frisvad JR, et al. Surface roughness of as-printed polymers: a comprehensive review. Int J Adv Manuf Technol. 2023;127(3):987–1043. doi:10.1007/s00170-023-11566-z
  • Buj-Corral I, Domínguez-Fernández A, Gómez-Gejo A. Effect of printing parameters on dimensional error and surface roughness obtained in direct Ink writing (DIW) processes. Materials (Basel). 2020;13(9):2157. doi:10.3390/ma13092157
  • Hu Q, Rance GA, Trindade GF, et al. The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing. Addit Manuf. 2022;51:102575. doi:10.1016/j.addma.2021.102575
  • Huang Q, Wang G, Zhou M, et al. Metamaterial electromagnetic wave absorbers and devices: design and 3D microarchitecture. J Mater Sci Technol. 2022;108:90–101. doi:10.1016/j.jmst.2021.07.055
  • Mei H, Yang W, Yang D, et al. Metamaterial absorbers towards broadband, polarization insensitivity and tunability. Opt Laser Technol. 2022;147. doi:10.1016/j.optlastec.2021.107627
  • Wang Y-Z, Xu H-X, Wang C-H, et al. Research progress of electromagnetic metamaterial absorbers. Acta Phys Sin. 2020;69(13). doi:10.7498/aps.69.20200355
  • Wang B-X, Xu C, Duan G, et al. Review of broadband metamaterial absorbers: from principles, design strategies, and tunable properties to functional applications. Adv Funct Mater. 2023;33(14). doi:10.1002/adfm.202213818
  • Wen J, Zhao Q, Peng R, et al. Progress in water-based metamaterial absorbers: a review. Opt Mater Express. 2022;12(4). doi:10.1364/ome.455723
  • Zhou R, Yu Z, Wu Z, et al. 3D printing metamaterials for highly efficient electromagnetic wave absorption. Sci China Mater. 2023;66(4):1283–1312. doi:10.1007/s40843-022-2352-4
  • Zeng XJ, Cheng XY, Yu RH, et al. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon NY. 2020;168:606–623. doi:10.1016/j.carbon.2020.07.028
  • Bogatin AS, Bulanova AL, Kovrigina SA, et al. Frequency management of the capacitance and conductivity of a dielectric upon relaxation polarization. Bulletin Russ Aca Sci Phys. 2020;84(9):1172–1174. doi:10.3103/S1062873820090087
  • Lu M-M, Cao M-S, Chen Y-H, et al. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl Mater Interfaces. 2015;7(34):19408–19415. doi:10.1021/acsami.5b05595
  • Folgueras L, Rezende MC. Multilayer radar absorbing material processing by using polymeric nonwoven and conducting polymer. Mater Res-Ibero-Am J Mater. 2008;11(3):245–249.
  • Rhee JY, Yoo YJ, Kim KW, et al. Metamaterial-based perfect absorbers. J Electromagn Waves Appl. 2014;28(13):1541–1580. doi:10.1080/09205071.2014.944273
  • Duan G, Schalch J, Zhao X, et al. A survey of theoretical models for terahertz electromagnetic metamaterial absorbers. Sens Actuators, A. 2019;287:21–28. doi:10.1016/j.sna.2018.12.039
  • Sun H, Zhang Y, Wu Y, et al. Broadband and high-efficiency microwave absorbers based on pyramid structure. ACS Appl Mater Interfaces. 2022;14(46):52182–52192. doi:10.1021/acsami.2c16166
  • Nicolson AM, Ross GF. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrum Meas. 1970;19(4):377–382. doi:10.1109/TIM.1970.4313932
  • Smith DR. Analytic expressions for the constitutive parameters of magnetoelectric metamaterials. Phys Rev E. 2010;81(3). doi:10.1103/PhysRevE.81.036605
  • Smith DR, Schultz S, Markos P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B. 2002;65(19). doi:10.1103/PhysRevB.65.195104
  • Smith DR, Vier DC, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E. 2005;71(3). doi:10.1103/PhysRevE.71.036617
  • Grimes CA, Grimes DM. Permeability and permittivity spectra of granular materials. Phys Rev B. 1991;43(13):10780–8. doi:10.1103/PhysRevB.43.10780
  • Wang T, Chen G, Zhu JH, et al. Deep understanding of impedance matching and quarter wavelength theory in electromagnetic wave absorption. J Colloid Interface Sci. 2021;595:1–5. doi:10.1016/j.jcis.2021.03.132
  • Chen Z, Zhang Y, Wang Z, et al. Bioinspired moth-eye multi-mechanism composite ultra-wideband microwave absorber based on the graphite powder. Carbon NY. 2023;201:542–548. doi:10.1016/j.carbon.2022.09.035
  • Hedayati MK, Zillohu AU, Strunskus T, et al. Plasmonic tunable metamaterial absorber as ultraviolet protection film. Appl Phys Lett. 2014;104(4):041103. doi:10.1063/1.4863202
  • Mattiucci N, Bloemer MJ, Aközbek N, et al. Impedance matched thin metamaterials make metals absorbing. Sci Rep. 2013;3:3203. doi:10.1038/srep03203
  • Liu T, Caballero JM, Wang Y. Design of metamaterial solar absorber based on impedance matching theory. Plasmonics. 2024;19(2):699–709. doi:10.1007/s11468-023-02024-3
  • Xu H-X, Wang G-M, Qi M-Q, et al. Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Phys Rev B. 2012;86(20):205104. doi:10.1103/PhysRevB.86.205104
  • Zeng X, Gao M, Zhang L, et al. Design of a triple-band metamaterial absorber using equivalent circuit model and interference theory. Microw Opt Technol Lett. 2018;60(7):1676–1681. doi:10.1002/mop.31219
  • Costa F, Genovesi S, Monorchio A, et al. A circuit-based model for the interpretation of perfect metamaterial absorbers. IEEE Trans Antennas Propag. 2013;61(3):1201–1209. doi:10.1109/TAP.2012.2227923
  • Wen QY, Xie YS, Zhang HW, et al. Transmission line model and fields analysis of metamaterial absorber in the terahertz band. Opt Express. 2009;17(22):20256–20265. doi:10.1364/OE.17.020256
  • Chen H-T. Interference theory of metamaterial perfect absorbers. Opt Express. 2012;20(7):7165–7172. doi:10.1364/OE.20.007165
  • Shang Y, Shen Z, Xiao S. On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Trans Antennas Propag. 2013;61(12):6022–6029. doi:10.1109/TAP.2013.2280836
  • Shen X, Yang Y, Zang Y, et al. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett. 2012;101(15). doi:10.1063/1.4757879
  • Sun H, Zhang Y, Wu Y, et al. Broadband absorption of macro pyramid structure based flame retardant absorbers. J Mater Sci Technol. 2022;128:228–238. doi:10.1016/j.jmst.2022.04.030
  • Shrekenhamer D, Xu WR, Venkatesh S, et al. Experimental realization of a metamaterial detector focal plane array. Phys Rev Lett. 2012;109(17). doi:10.1103/PhysRevLett.109.177401
  • Venkatesh S, Shrekenhamer D, Xu WR, et al. Interferometric direction finding with a metamaterial detector. Appl Phys Lett. 2013;103(25). doi:10.1063/1.4851936
  • Guddala S, Kumar R, Anantha Ramakrishna S. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers. Appl Phys Lett. 2015;106(11). doi:10.1063/1.4914451
  • Long L, Taylor S, Ying X, et al. Thermally-switchable spectrally-selective infrared metamaterial absorber/emitter by tuning magnetic polariton with a phase-change VO2 layer. Mater Today Energy. 2019;13:214–220. doi:10.1016/j.mtener.2019.05.017
  • Hou W, Yang F, Chen Z, et al. Wide-angle and broadband solar absorber made using highly efficient large-area fabrication strategy. Opt Express. 2022;30(3):4424–4433. doi:10.1364/OE.451411
  • Shi Z, Song L, Zhang T. Terahertz reflection and visible light transmission of ITO films affected by annealing temperature and applied in metamaterial absorber. Vacuum. 2018;149:12–18. doi:10.1016/j.vacuum.2017.12.006
  • Chen X, Tian Z, Lu Y, et al. Electrically tunable perfect terahertz absorber based on a graphene salisbury screen hybrid metasurface. Adv Opt Mater. 2020;8(3). doi:10.1002/adom.201900660
  • Xing R, Jian S. A dual-band THz absorber based on graphene sheet and ribbons. Opt Laser Technol. 2018;100:129–132. doi:10.1016/j.optlastec.2017.10.003
  • Chung M, Jeong H, Kim YK, et al. Design and fabrication of millimeter-wave frequency-tunable metamaterial absorber using MEMS cantilever actuators. Micromachines (Basel). 2022;13(8). doi:10.3390/mi13081354
  • Lee J-Y, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120–133. doi:10.1016/j.apmt.2017.02.004
  • Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–10290. doi:10.1021/acs.chemrev.7b00074
  • Chen H, Liu J, Xiao L, et al. All-dielectric absorbing array based on 3D printing metamaterial. Opt Quantum Electron. 2023;55:6. doi:10.1007/s11082-022-04262-x
  • Lim DD, Park J, Lee J, et al. Broadband mechanical metamaterial absorber enabled by fused filament fabrication 3D printing. Addit Manuf. 2022;55. doi:10.1016/j.addma.2022.102856
  • Wu Z, Chen X, Zhang Z, et al. Design and optimization of a flexible water-based microwave absorbing metamaterial. Appl Phys Express. 2019;12(5). doi:10.7567/1882-0786/ab0f66
  • Zhang Z, Wang F, Zhang J, et al. Ultra-broadband and wide-angle metamaterial absorber with carbon black/carbonyl iron composites fabricated by direct-Ink-write 3D printing. Adv Eng Mater. 2023;25(6). doi:10.1002/adem.202201236
  • Li Z, Li Y, Shi B, et al. Dual gradient direct ink writing of functional geopolymer-based carbonyl-iron/graphene composites for adjustable broadband microwave absorption. Ceram Int. 2022;48(7):9277–9285. doi:10.1016/j.ceramint.2021.12.114
  • Yao L, Yang W, Zhou S, et al. Top-down parametrization-design of orientation-reinforced SiOC-based perfect metamaterial microwave absorber with wide-temperature adaptability. Acta Mater. 2023;249. doi:10.1016/j.actamat.2023.118803
  • Zhou R, Wang Y, Liu Z, et al. Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano Micro Lett. 2022;14(1). doi:10.1007/s40820-022-00865-x
  • Mei H, Yang W, Zhao X, et al. In-situ growth of SiC nanowires@carbon nanotubes on 3D printed metamaterial structures to enhance electromagnetic wave absorption. Mater Des. 2021;197. doi:10.1016/j.matdes.2020.109271
  • Liang Q, Yang Z, Guo J, et al. A high-efficient tunable liquid metal-based electromagnetic absorbing metamaterial. J Mater Sci: Mater Electron. 2020;31(21):19242–7. doi:10.1007/s10854-020-04459-4
  • Hendrickson-Stives AK, Kang L, Donahue NR, et al. 3D printed metamaterial absorbers for mid-infrared surface-enhanced spectroscopy. Appl Phys Lett. 2022;120(19). doi:10.1063/5.0093332
  • Wen Y, Xiong Y, Zhang F, et al. Enhancement of mechanical properties of metamaterial absorber based on selective laser sintering and infiltration techniques. Compos Commun. 2020;21. doi:10.1016/j.coco.2020.100373
  • Xiong Y-J, Wang Y, Wang Q, et al. Structural broadband absorbing metamaterial based on three-dimensional printing technology. Acta Phys Sin. 2018;67(8). doi:10.7498/aps.67.20172262
  • Wang C, Wu S, Li Z, et al. 3D printed porous biomass–derived SiCnw/SiC composite for structure–function integrated electromagnetic absorption. Virtual Phys Prototyp. 2022;17(3):718–733. doi:10.1080/17452759.2022.2056950
  • Zhou D, Huang X, Du Z. Analysis and design of multilayered broadband radar absorbing metamaterial using the 3-D printing technology-based method. IEEE Antennas Wirel Propag Lett. 2017;16:133–136. doi:10.1109/LAWP.2016.2560904
  • Yin L, Doyhamboure–Fouquet J, Tian X, et al. Design and characterization of radar absorbing structure based on gradient-refractive-index metamaterials. Composites Part B. 2018;132:178–187. doi:10.1016/j.compositesb.2017.09.003
  • Yang T, Li X, Yu B, et al. Design and print terahertz metamaterials based on electrohydrodynamic Jet. Micromachines (Basel). 2023;14(3). doi:10.3390/mi14030659
  • He XY, Liu F, Lin FT, et al. Investigation of terahertz all-dielectric metamaterials. Opt Express. 2019;27(10):13831–13844. doi:10.1364/OE.27.013831
  • Barton JH, Rumpf RC, Smith RW, et al. All-dielectric frequency selective surfaces with few number of periods. Prog Electromagn Res B. 2012;41:269–283. doi:10.2528/PIERB12042404
  • Li L, Wang J, Wang J, et al. All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators. Appl Phys Lett. 2015;106(21). doi:10.1063/1.4921712
  • Zhang F, Wang Q, Zhou T, et al. A multi-band binary radar absorbing metamaterial based on a 3D low-permittivity all-dielectric structure. J Alloys Compd. 2020;814:152300. doi:10.1016/j.jallcom.2019.152300
  • Tan R, Zhou F, Liu Y, et al. 3D printed propeller-like metamaterial for wide-angle and broadband microwave absorption. J Mater Sci Technol. 2023;144:45–53. doi:10.1016/j.jmst.2022.10.012
  • Yin L, Tian X, Shang Z, et al. Ultra-broadband metamaterial absorber with graphene composites fabricated by 3D printing. Mater Lett. 2019;239:132–135. doi:10.1016/j.matlet.2018.12.087
  • Li X, Guo L, Gong C, et al. 3D printed terahertz metamaterial absorber with visual light transparent. Opt Commun. 2023;541. doi:10.1016/j.optcom.2023.129532
  • Wang ZH. The influence of surface roughness on conductor at terahertz frequencies. Optik (Stuttg). 2014;125(13):3237–3240. doi:10.1016/j.ijleo.2013.12.051
  • Luo C, Jiao T, Tang Y, et al. Excellent electromagnetic wave absorption of iron-containing SiBCN ceramics at 1158 K high-temperature. Adv Eng Mater. 2018;20(6):1701168. doi:10.1002/adem.201701168
  • Luo C, Tang Y, Jiao T, et al. High-Temperature stable and metal-free electromagnetic wave-absorbing SiBCN ceramics derived from carbon-rich hyperbranched polyborosilazanes. ACS Appl Mater Interfaces. 2018;10(33):28051–28061. doi:10.1021/acsami.8b07879
  • Song Y, He LH, Zhang XF, et al. Highly efficient electromagnetic wave absorbing metal-free and carbon-rich ceramics derived from hyperbranched polycarbosilazanes. J Phys Chem C. 2017;121(44):24774–24785. doi:10.1021/acs.jpcc.7b07646
  • Song Y, Liu Z, Zhang X, et al. Single source precursor derived SiBCNHf ceramic with enhanced high-temperature microwave absorption and antioxidation. J Mater Sci Technol. 2022;126:215–227. doi:10.1016/j.jmst.2022.03.015
  • Colombo P, Mera G, Riedel R, et al. Polymer-Derived ceramics: 40 years of research and innovation in advanced ceramics. 2010;93(7):1805–1837. doi:10.1111/j.1551-2916.2010.03876.x
  • Viard A, Fonblanc D, Lopez-Ferber D, et al. Polymer derived Si–B–C–N ceramics: 30 years of research. 2018;20(10):1800360. doi:10.1002/adem.201800360
  • Lu J, Sheng M, Gong H, et al. Lightweight, ultra-broadband SiOC-based triply periodic minimal surface meta-structures for electromagnetic absorption. Chem Eng J. 2024;488:151056. doi:10.1016/j.cej.2024.151056
  • Lu J, Jing J, Zhou X, et al. Vat photopolymerization 3D printing gyroid meta-structural SiOC ceramics achieving full absorption of X-band electromagnetic wave. Addit Manuf. 2023;78:103827. doi:10.1016/j.addma.2023.103827
  • Sanchez S, Smith P, Xu Z, et al. Powder bed fusion of nickel-based superalloys: a review. Int J Mach Tools Manuf. 2021;165. doi:10.1016/j.ijmachtools.2021.103729
  • Sing SL, Yeong WY. Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments. Virtual Phys Prototyp. 2020;15(3):359–370. doi:10.1080/17452759.2020.1779999
  • Tolochko NK, Khlopkov YV, Mozzharov SE, et al. Absorptance of powder materials suitable for laser sintering. Rapid Prototyp J. 2000;6(3):155–161. doi:10.1108/13552540010337029
  • Zhao X, Wang T. Laser powder Bed fusion of powder material: a review. 3D Print Addit Manuf. 2022. doi:10.1089/3dp.2021.0297
  • Yuan S, Bai J, Chua CK, et al. Material evaluation and process optimization of CNT-coated polymer powders for selective laser sintering. Polymers (Basel). 2016;8(10). doi:10.3390/polym8100370
  • Gill TJ, Hon KKB. Experimental investigation into the selective laser sintering of silicon carbide polyamide composites. Proc Inst Mech Eng, Part B: J Eng Manuf. 2004;218(10):1249–1256. doi:10.1243/0954405042323487
  • Goodridge RD, Shofner ML, Hague RJM, et al. Processing of a polyamide-12/carbon nanofibre composite by laser sintering. Polym Test. 2011;30(1):94–100. doi:10.1016/j.polymertesting.2010.10.011
  • Wen SF, Yan CZ, Wei QS, et al. Investigation and development of large-scale equipment and high performance materials for powder bed laser fusion additive manufacturing. Virtual Phys Prototyp. 2014;9(4):213–223. doi:10.1080/17452759.2014.949406
  • Gong P, Hao L, Li Y, et al. 3D-printed carbon fiber/polyamide-based flexible honeycomb structural absorber for multifunctional broadband microwave absorption. Carbon NY. 2021;185:272–281. doi:10.1016/j.carbon.2021.09.014
  • Cui Y, He Y, Jin Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev. 2014;8(4):495–520. doi:10.1002/lpor.201400026
  • Akin S, Nath C, Jun MB-G. Selective surface metallization of 3D-printed polymers by cold-spray-assisted electroless deposition. ACS Appl Electron Mater. 2023;5(9):5164–5175. doi:10.1021/acsaelm.3c00893
  • Ryspayeva A, Zhakeyev A, Desmulliez MPY, et al. Multimaterial 3D printing technique for electronic circuitry using photopolymer and selective metallization. Adv Eng Mater. 2022;24(12). doi:10.1002/adem.202270048
  • Huang X, Yang H, Shen Z, et al. Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime. J Phys D: Appl Phys. 2017;50(38). doi:10.1088/1361-6463/aa81af
  • Xie J, Quader S, Xiao F, et al. Truly all-dielectric ultrabroadband metamaterial absorber: water-based and ground-free. IEEE Antennas Wirel Propag Lett. 2019;18(3):536–540. doi:10.1109/LAWP.2019.2896166
  • Lu Z, Yang Y-G, Huang J-L. Dual-band terahertz metamaterial absorber using hexagon graphene structure. Microw Opt Technol Lett. 2021;63(7):1797–1802. doi:10.1002/mop.32816
  • Wang L, Xia D, Fu Q, et al. A tunable ultra-wideband metamaterial absorber based on graphene. J Comput Electron. 2021;20(1):107–115. doi:10.1007/s10825-020-01556-9
  • Xiong H, Jiang Y-N, Yang C, et al. Frequency-tunable terahertz absorber with wire-based metamaterial and graphene. J Phys D: Appl Phys. 2018;51(1). doi:10.1088/1361-6463/aa9916
  • Xiong H, Wu Y-B, Dong J, et al. Ultra-thin and broadband tunable metamaterial graphene absorber. Opt Express. 2018;26(2):1681–1688. doi:10.1364/OE.26.001681
  • Obaidullah M, Esat V, Sabah C. Thin film (6,5) semiconducting single-walled carbon nanotube metamaterial absorber for photovoltaic applications. Opt Eng. 2017;56(12). doi:10.1117/1.OE.56.12.127101
  • Ordek B, Esat V, Sabah C. Effects of bending on the electro-optical properties of a wide-band silicon-carbon nanotube-based metamaterial absorber. Mater Today Commun. 2022;32. doi:10.1016/j.mtcomm.2022.104073
  • Yang Z, Che Y, Sun X, et al. Broadband polarization-insensitive microwave-absorbing composite material based on carbon nanotube film metamaterial and ferrite. J Appl Phys. 2019;125(18). doi:10.1063/1.5086315
  • Dehghan-Banadaki M, Heidari AA, Nakhkash M. Hybrid absorber with carbon black composite and metamaterial structure. IET Microw Antennas Propag. 2020;14(13):1566–1572. doi:10.1049/iet-map.2020.0086
  • Guo M, Wang X, Zhuang H, et al. Broadband carbon-based all-dielectric metamaterial absorber enhanced by high-contrast gratings based spoof surface plasmon polaritons. Phys Scr. 2023;98(3). doi:10.1088/1402-4896/acbacd
  • Li M, Muneer B, Yi Z, et al. A broadband compatible multispectral metamaterial absorber for visible, near-infrared, and microwave bands. Adv Opt Mater. 2018;6(9). doi:10.1002/adom.201701238
  • Bharambe V, Parekh DP, Ladd C, et al. Vacuum-filling of liquid metals for 3D printed RF antennas. Addit Manuf. 2017;18:221–227. doi:10.1016/j.addma.2017.10.012
  • Li SN, Shen ZL, Yin W, et al. 3D-printed terahertz metamaterial for electromagnetically induced reflection analogue. J Phys D: Appl Phys. 2022;55(32). doi:10.1088/1361-6463/ac708c
  • Shen Z, Li S, Xu Y, et al. Three-Dimensional printed ultrabroadband terahertz metamaterial absorbers. Phys Rev Appl. 2021;16(1). doi:10.1103/PhysRevApplied.16.014066
  • Deng GS, Yu ZC, Yin ZP, et al. A miniaturized and wide-angle 3D metamaterial for reflective polarization conversion. Opt Mater. 2022;133. doi:10.1016/j.optmat.2022.113017
  • Yin W, Shen ZL, Li SN, et al. Flexible broadband terahertz absorbers for RCS reduction on conformal surfaces. Opt Commun. 2022;520. doi:10.1016/j.optcom.2022.128502
  • Sun ZK, Chen BC, Wang YY, et al. Study on metal alloy-reinforced polycaprolactone 3D printed composites for electromagnetic protection. Compos Sci Technol. 2022;225. doi:10.1016/j.compscitech.2022.109516
  • Hou TQ, Wang BB, Jia ZR, et al. A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. J Mater Sci: Mater Electron. 2019;30(12):10961–10984. doi:10.1007/s10854-019-01537-0
  • Man QK, Lei ZK, Zhuang XH, et al. Simulation and design of a prism-type ultra-broadband microwave absorber based on magnetic powder/silica gel composites. Materials (Basel). 2022;15(17). doi:10.3390/ma15175803
  • Greene JE. Review article: tracing the recorded history of thin-film sputter deposition: from the 1800s to 2017. J Vac Sci Technol A: Vac, Surf Films. 2017;35(5). doi:10.1116/1.4998940
  • Helmersson U, Lattemann M, Bohlmark J, et al. Ionized physical vapor deposition (IPVD): a review of technology and applications. Thin Solid Films. 2006;513(1-2):1–24. doi:10.1016/j.tsf.2006.03.033
  • Pyun MW, Kim EJ, Yoo D-H, et al. Oblique angle deposition of TiO2 thin films prepared by electron-beam evaporation. Appl Surf Sci. 2010;257(4):1149–1153. doi:10.1016/j.apsusc.2010.08.038
  • Randolph SJ, Fowlkes JD, Rack PD. Focused: nanoscale electron-beam-induced deposition and etching. Crit Rev Solid State Mater Sci. 2006;31(3):55–89. doi:10.1080/10408430600930438
  • Li S, Zhang L, Chen X. 3D-printed terahertz metamaterial absorber based on vertical split-ring resonator. J Appl Phys. 2021;130(3). doi:10.1063/5.0056276
  • Li S, Shen Z, Yin W, et al. 3D printed cross-shaped terahertz metamaterials with single-band, multi-band and broadband absorption. Opt Mater. 2021;122. doi:10.1016/j.optmat.2021.111739
  • Sadeqi A, Nejad HR, Owyeung RE, et al. Three dimensional printing of metamaterial embedded geometrical optics (MEGO). Microsyst Nanoeng. 2019;5(1):16. doi:10.1038/s41378-019-0053-6
  • Lim D, Yu S, Lim S. Miniaturized metamaterial absorber using three-dimensional printed stair-like Jerusalem cross. IEEE Access. 2018;6:43654–9. doi:10.1109/ACCESS.2018.2862160
  • Ghosh S, Lim S. Perforated lightweight broadband metamaterial absorber based on 3-D printed honeycomb. IEEE Antennas Wirel Propag Lett. 2018;17(12):2379–2383. doi:10.1109/LAWP.2018.2876023
  • Kim M, Jeong H, Lim D, et al. Low-cost and miniaturized metamaterial absorber using 3D printed swastika symbol. Microw Opt Technol Lett. 2020;62(4):1709–1715. doi:10.1002/mop.32221
  • Yoon Y, Lim D, Tentzeris MM, et al. Low-cost metamaterial absorber using three-dimensional circular truncated cone. Microw Opt Technol Lett. 2018;60(7):1622–1630. doi:10.1002/mop.31211
  • Jiang W, Yan L, Ma H, et al. Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb. Sci Rep. 2018;8. doi:10.1038/s41598-018-23286-6
  • Ren J, Yin JY. 3D-printed low-cost dielectric-resonator-based ultra-broadband microwave absorber using carbon-loaded acrylonitrile butadiene styrene polymer. Materials (Basel). 2018;11(7). doi:10.3390/ma11071249
  • Yang Z, Liang Q, Duan Y, et al. A 3D-printed lightweight broadband electromagnetic absorbing metastructure with preserved high-temperature mechanical property. Compos Struct. 2021;274. doi:10.1016/j.compstruct.2021.114330
  • Yang Z, Liang Q, Duan Y, et al. A 3D-printed lightweight and broadband metamaterial absorber made by copper-based conductive composite. Paper presented at the 14th International Congress on artificial materials for novel wave phenomena (metamaterials), electr network, 2020 Sep 28–Oct 3; 2020; IEEE.
  • Andryieuski A, Kuznetsova SM, Zhukovsky SV, et al. Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials. Sci Rep. 2015;5:13535. doi:10.1038/srep13535
  • Yoo Y-J, Ju S, Park SY, et al. Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci Rep. 2015;5(1):14018. doi:10.1038/srep14018.
  • Shen Z, Huang X, Yang H, et al. An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water. J Appl Phys. 2018;123(22). doi:10.1063/1.5024319
  • Zhang X, Zhang D, Fu Y, et al. 3-D printed swastika-shaped ultrabroadband water-based microwave absorber. IEEE Antennas Wirel Propag Lett. 2020;19(5):821–825. doi:10.1109/LAWP.2020.2981405
  • Li S, Shen Z, Yang H, et al. Ultra-wideband transmissive water-based metamaterial absorber with wide angle incidence and polarization insensitivity. Plasmonics. 2021;16(4):1269–1275. doi:10.1007/s11468-021-01389-7
  • Deng G, Chen W, Yu Z, et al. 3D-printed dielectric-resonator-based ultra-broadband microwave absorber using water substrate. J Electron Mater. 2022;51(5):2221–2227. doi:10.1007/s11664-022-09439-4
  • Chen Y, Chen K, Zhang D, et al. Ultrabroadband microwave absorber based on 3D water microchannels. Photonics Research. 2021;9(7):1391–1396. doi:10.1364/PRJ.422686
  • Dupont J, de Souza RF, Suarez PA. Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev. 2002;102(10):3667–3692. doi:10.1021/cr010338r
  • Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008;37(1):123–150. doi:10.1039/B006677J
  • Agudelo Mesa LB, Padró JM, Reta M. Analysis of non-polar heterocyclic aromatic amines in beefburguers by using microwave-assisted extraction and dispersive liquid–ionic liquid microextraction. Food Chem. 2013;141(3):1694–1701. doi:10.1016/j.foodchem.2013.04.076
  • Yang F, Gong J, Yang E, et al. Microwave-absorbing properties of room-temperature ionic liquids. J Phys D: Appl Phys. 2019a;52(15). doi:10.1088/1361-6463/ab016c
  • Stoppa A, Hunger J, Buchner R, et al. Interactions and dynamics in ionic liquids. J Phys Chem B. 2008;112(16):4854–4858. doi:10.1021/jp800852z
  • Gong J, Yang F, Shao Q, et al. Microwave absorption performance of methylimidazolium ionic liquids: towards novel ultra-wideband metamaterial absorbers. RSC Adv. 2017;7(67):41980–41988. doi:10.1039/C7RA06709G
  • Yang E, Yang F, Pei J, et al. All-dielectric ultra-broadband metamaterial absorber based on imidazole ionic liquids. J Phys D: Appl Phys. 2019;52(39). doi:10.1088/1361-6463/ab2d9a
  • Zhang C, Yang F, Zhang A, et al. An ionic liquid-based ultra-broadband absorber with temperature stability, polarization insensitivity, and wide incident angle. J Phys D: Appl Phys. 2023;56(8). doi:10.1088/1361-6463/acb4a6
  • Yang F, Gong J, Yang E, et al. Ultrabroadband metamaterial absorbers based on ionic liquids. Appl Phys A. 2019b;125(2). doi:10.1007/s00339-019-2443-x
  • So JH, Thelen J, Qusba A, et al. Reversibly deformable and mechanically tunable fluidic antennas. Adv Funct Mater. 2009;19(22):3632–3637. doi:10.1002/adfm.200900604
  • Ling K, Kim HK, Yoo M, et al. Frequency-Switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy. Sensors. 2015;15(11):28154–28165. doi:10.3390/s151128154
  • Ling K, Kim K, Lim S. Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS). Opt Express. 2015;23(16):21375–21383. doi:10.1364/OE.23.021375
  • Kim HK, Lee D, Lim S. Wideband-switchable metamaterial absorber using injected liquid metal. Sci Rep. 2016;6. doi:10.1038/srep31823
  • Kim K, Lee D, Eom S, et al. Stretchable metamaterial absorber using liquid metal-filled polydimethylsiloxane (PDMS). Sensors. 2016;16(4). doi:10.3390/s16040521
  • Yin W, Li S, Shen Z, et al. Broadband and multiband terahertz metamaterials based on 3-D-printed liquid metal-filled microchannel. IEEE Trans Microwave Theory Tech. 2023;71(8):3333–3340. doi:10.1109/TMTT.2023.3278945
  • Chu H, Yang W, Sun L, et al. 4D printing: a review on recent progresses. Micromachines (Basel). 2020;11(9). doi:10.3390/mi11090796
  • Kuang X, Roach DJ, Wu J, et al. Advances in 4D printing: materials and applications. Adv Funct Mater. 2019;29(2). doi:10.1002/adfm.201805290
  • Momeni F, Seyed M, Hassani MN, et al. A review of 4D printing. Mater Des. 2017;122:42–79. doi:10.1016/j.matdes.2017.02.068
  • Wu J-J, Huang L-M, Zhao Q, et al. 4D printing: history and recent progress. Chin J Polym Sci. 2018;36(5):563–575. doi:10.1007/s10118-018-2089-8
  • Wang Y, Cui H, Esworthy T, et al. Emerging 4D printing strategies for next-generation tissue regeneration and medical devices. Adv Mater. 2022;34(20):2109198. doi:10.1002/adma.202109198
  • Cecchini L, Mariani S, Ronzan M, et al. 4D printing of humidity-driven seed inspired soft robots. Adv Sci. 2023;10(9):2205146. doi:10.1002/advs.202205146
  • Zeng S, Gao Y, Tan J, et al. Self-assembly by 4D printing: design and fabrication of sequential self-folding; 2022.
  • Wan M, Yu K, Gu J, et al. 4D printed TMP origami metamaterials with programmable mechanical properties. Int J Mech Sci. 2023;250. doi:10.1016/j.ijmecsci.2023.108275
  • Xin X, Liu L, Liu Y, et al. 4D printing auxetic metamaterials with tunable, programmable, and reconfigurable mechanical properties. Adv Funct Mater. 2020;30(43). doi:10.1002/adfm.202004226
  • Yang C, Boorugu M, Dopp A, et al. 4D printing reconfigurable, deployable and mechanically tunable metamaterials. Mater Horiz. 2019;6(6):1244–1250. doi:10.1039/C9MH00302A
  • Kang Y, Wu L, Tian X, et al. 4D printed thermally tunable metasurface with continuous carbon fibre. Virtual Phys Prototyp. 2023;18(1). doi:10.1080/17452759.2023.2224298
  • Yang D, Mei H, Yao L, et al. 3D/4D printed tunable electrical metamaterials with more sophisticated structures. J Mater Chem C. 2021;9(36):12010–12036. doi:10.1039/D1TC02588K
  • Bodaghi M, Liao WH. 4D printed tunable mechanical metamaterials with shape memory operations. Smart Mater Struct. 2019;28(4):045019. doi:10.1088/1361-665X/ab0b6b
  • Li B, Zhang C, Peng F, et al. 4D printed shape memory metamaterial for vibration bandgap switching and active elastic-wave guiding. J Mater Chem C. 2021;9(4). doi:10.1039/d0tc04999a
  • Zhao W, Li N, Liu X, et al. 4D printed shape memory metamaterials with sensing capability derived from the origami concept. Nano Energy. 2023;115. doi:10.1016/j.nanoen.2023.108697
  • Chen K, Zhang X, Li S, et al. Switchable 3D printed microwave metamaterial absorbers by mechanical rotation control. J Phys D: Appl Phys. 2020;53:30. doi:10.1088/1361-6463/ab85e8
  • Jeong H, Park E, Lim S. Three-dimensional printed and fluidic dielectric material optically transparent metasurface for switchable absorption and reflection functionality in microwave frequency region. Waves Random Complex Media. 2022. doi:10.1080/17455030.2022.2058712
  • Yu B, Yin L, Wang P, et al. Terahertz reconfigurable multi-functional metamaterials based on 3D printed mortise-tenon structures. Virtual Phys Prototyp. 2023;18(1). doi:10.1080/17452759.2023.2230468
  • Kim B-K, Lee B. Design of metamaterial-inspired wideband absorber at X-band adopting trumpet structures. J Electromagn Eng Sci. 2014;14:314–316. doi:10.5515/JKIEES.2014.14.3.314
  • Zhao J, Cheng Q, Chen J, et al. A tunable metamaterial absorber using varactor diodes. New J Phys. 2013;15(4):043049. doi:10.1088/1367-2630/15/4/043049
  • Wen Q-Y, Zhang H-W, Yang Q-H, et al. A tunable hybrid metamaterial absorber based on vanadium oxide films. J Phys D: Appl Phys. 2012;45(23):235106. doi:10.1088/0022-3727/45/23/235106
  • Tao H, Strikwerda AC, Fan K, et al. MEMS based structurally tunable metamaterials at terahertz frequencies. J Infrared, Millimeter, Terahertz Waves. 2011;32(5):580–595. doi:10.1007/s10762-010-9646-8
  • Frick A, Rochman A. Characterization of TPU-elastomers by thermal analysis (DSC). Polym Test. 2004;23(4):413–417. doi:10.1016/j.polymertesting.2003.09.013
  • Zhou Q, Xue B, Gu S, et al. Ultra broadband electromagnetic wave absorbing and scattering properties of flexible sandwich cylindrical water-based metamaterials. Results Phys. 2022;38. doi:10.1016/j.rinp.2022.105587
  • Pour SZ, Chegini E, Mighani M. Design of wideband metamaterial absorber using circuit theory for X-band applications. IET Microw Antennas Propag. 2023;17(4):292–300. doi:10.1049/mia2.12338
  • Olakanmi EO, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci. 2015;74:401–477. doi:10.1016/j.pmatsci.2015.03.002
  • Yap CY, Chua CK, Dong ZL, et al. Review of selective laser melting: materials and applications. Appl Phys Rev. 2015;2(4). doi:10.1063/1.4935926
  • Kowsari K, Akbari S, Wang D, et al. High-Efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing. 3D Print Addit Manuf. 2018;5(3):185–193. doi:10.1089/3dp.2018.0004