0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

3D printed three-dimensional elastic metamaterial with surface resonant units for low-frequency vibration isolation

, , , , &
Article: e2382159 | Received 16 Apr 2024, Accepted 10 Jul 2024, Published online: 26 Jul 2024

References

  • Li F, Zhang Q, Wang Z, et al. A new three-dimensional re-entrant negative Poisson’s ratio metamaterial with tunable stiffness. Eng Struct. 2024;306:117793. doi:10.1016/j.engstruct.2024.117793
  • Pan Y, Zhou Y, Gao Q, et al. A novel 3D polygonal double-negative mechanical metamaterial with negative stiffness and negative Poisson’s ratio. Compos Struct. 2024;331:117878. doi:10.1016/j.compstruct.2024.117878
  • Yao Y, He LH, Jin JH, et al. A novel design of mechanical metamaterial incorporating multiple negative indexes. Mater Res Express. 2023;10(5):055801. doi:10.1088/2053-1591/accf02
  • Danawe H, Tol S. Experimental realization of negative refraction and subwavelength imaging for flexural waves in phononic crystal plates. J Sound Vib. 2022;518:116552. doi:10.1016/j.jsv.2021.116552
  • Gao F, Benchabane S, Bermak A, et al. On-chip tightly confined guiding and splitting of surface acoustic waves using line defects in phononic crystals. Adv Funct Mater. 2023;33(14):2213625. doi:10.1002/adfm.202213625
  • Li M, Hu Y, Cheng J, et al. Elastic metasurfaces with tailored initial phase for broadband subwavelength focusing. Int J Mech Sci. 2024;268:109048. doi:10.1016/j.ijmecsci.2024.109048
  • Martínez-Sala R, Sancho J, Sánchez JV, et al. Sound attenuation by sculpture. Nature. 1995;378(6554):241–241. doi:10.1038/378241a0
  • Sigalas MM, Economou EN. Elastic and acoustic wave band structure. J Sound Vib. 1992;158(2):377–382. doi:10.1016/0022-460X(92)90059-7
  • Liang HY, Yi XY, Shang QW, et al. The study of two- dimensional composite materials with wide band gap. Acta Phys Sin. 2007(5):2784–2789. doi:10.7498/aps.56.2784
  • Alonso-Redondo E, Schmitt M, Urbach Z, et al. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids. Nat Commun. 2015;6(1):8309. doi:10.1038/ncomms9309
  • Yu D, Hu G, Ding W, et al. Zero-thermal-expansion metamaterial with broadband vibration suppression. Int J Mech Sci. 2023;258:108590. doi:10.1016/j.ijmecsci.2023.108590
  • Hsieh P-F, Wu T-T, Sun J-H. Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(1):148–158. doi:10.1109/TUFFC.2006.1588400
  • Zhang X, Liu Z, Liu Y, et al. Elastic wave band gaps for three-dimensional phononic crystals with two structural units. Phys Lett A. 2003;313(5–6):455–460. doi:10.1016/S0375-9601(03)00807-7
  • Wang YZ, Li FM, Kishimoto K, et al. Wave band gaps in three-dimensional periodic piezoelectric structures. Mech Res Commun. 2009;36(4):461–468. doi:10.1016/j.mechrescom.2009.01.003
  • Pennec Y, Vasseur JO, Djafari-Rouhani B, et al. Two-dimensional phononic crystals: Examples and applications. Surf Sci Rep. 2010;65(8):229–291. doi:10.1016/j.surfrep.2010.08.002
  • Liu Z, Chan CT, Sheng P. Analytic model of phononic crystals with local resonances. Phys Rev B. 2005;71(1):014103. doi:10.1103/PhysRevB.71.014103
  • Goffaux C, Sánchez-Dehesa J, Yeyati AL, et al. Evidence of fano-like interference phenomena in locally resonant materials. Phys Rev Lett. 2002;88(22):225502. doi:10.1103/PhysRevLett.88.225502
  • Xiao W, Zeng GW, Cheng YS. Flexural vibration band gaps in a thin plate containing a periodic array of hemmed discs. Appl Acoust. 2008;69(3):255–261. doi:10.1016/j.apacoust.2006.09.003
  • Oudich M, Li Y, Assouar BM, et al. A sonic band gap based on the locally resonant phononic plates with stubs. New J Phys. 2010;12(8):083049. doi:10.1088/1367-2630/12/8/083049
  • Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials. Science. 2000;289(5485):1734–1736. doi:10.1126/science.289.5485.1734
  • Krushynska AO, Kouznetsova VG, Geers MGD. Towards optimal design of locally resonant acoustic metamaterials. J Mech Phys Solids. 2014;71:179–196. doi:10.1016/j.jmps.2014.07.004
  • Yin J, Peng HJ, Zhang S, et al. Design of nacreous composite material for vibration isolation based on band gap manipulation. Comput Mater Sci. 2015;102:126–134. doi:10.1016/j.commatsci.2015.01.032
  • Guo J, Li Y, Xiao Y, et al. Multiscale modeling and design of lattice truss core sandwich metastructures for broadband low-frequency vibration reduction. Compos Struct. 2022;289:115463. doi:10.1016/j.compstruct.2022.115463
  • Wu JH, Zhang SW, Shen L. Low-frequency vibration characteristics of periodic spiral resonators in phononic crystal plates. J Mech Eng. 2013;49(10):62–69. doi:10.3901/JME.2013.10.062
  • Badreddine Assouar M, Sun JH, Lin FS, et al. Hybrid phononic crystal plates for lowering and widening acoustic band gaps. Ultrasonics. 2014;54(8):2159–2164. doi:10.1016/j.ultras.2014.06.008
  • Matlack KH, Bauhofer A, Krödel S, et al. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc Natl Acad Sci USA. 2016;113(30):8386–8390. doi:10.1073/pnas.1600171113
  • Baravelli E, Ruzzene M. Internally resonating lattices for bandgap generation and low-frequency vibration control. J Sound Vib. 2013;332(25):6562–6579. doi:10.1016/j.jsv.2013.08.014
  • Cheng Q, Guo H, Yuan T, et al. Topological design of square lattice structure for broad and multiple band gaps in low-frequency range. Extreme Mech Lett. 2020;35:100632. doi:10.1016/j.eml.2020.100632
  • Mizukami K, Kawaguchi T, Ogi K, et al. Three-dimensional printing of locally resonant carbon-fiber composite metastructures for attenuation of broadband vibration. Compos Struct. 2021;255:112949. doi:10.1016/j.compstruct.2020.112949
  • Hou X, Feng J, An X, et al. Hybrid rod-plate lattice metamaterial with broadband vibration attenuation. Appl Acoust. 2024;216:109822. doi:10.1016/j.apacoust.2023.109822
  • Muhammad, Lim CW, Li JTH, et al. Lightweight architected lattice phononic crystals with broadband and multiband vibration mitigation characteristics. Extreme Mech Lett. 2020;41:100994. doi:10.1016/j.eml.2020.100994
  • Jiang W, Yin M, Liao Q, et al. Three-dimensional single-phase elastic metamaterial for low-frequency and broadband vibration mitigation. Int J Mech Sci. 2021;190:106023. doi:10.1016/j.ijmecsci.2020.106023
  • D’Alessandro L, Ardito R, Braghin F, et al. Low frequency 3D ultra-wide vibration attenuation via elastic metamaterial. Sci Rep. 2019;9(1):8039. doi:10.1038/s41598-019-44507-6
  • Elmadih W, Chronopoulos D, Syam WP, et al. Three-dimensional resonating metamaterials for low-frequency vibration attenuation. Sci Rep. 2019;9(1):11503. doi:10.1038/s41598-019-47644-0
  • Sheng H, He MX, Zhao J, et al. The ABH-based lattice structure for load bearing and vibration suppression. Int J Mech Sci. 2023;252:108378. doi:10.1016/j.ijmecsci.2023.108378
  • Ruan H, Li D. Band gap characteristics of bionic acoustic metamaterials based on spider web. Eng Struct. 2024;308:118003. doi:10.1016/j.engstruct.2024.118003
  • Yong J, Dong Y, Bao Y, et al. High load-bearing and low-frequency multi-broadband design of innovative composite meta-material. Mater Des. 2024;241:112945. doi:10.1016/j.matdes.2024.112945
  • An X, Lai C, He W, et al. Three-dimensional chiral meta-plate lattice structures for broad band vibration suppression and sound absorption. Composites, Part B. 2021;224:109232. doi:10.1016/j.compositesb.2021.109232
  • Jiang W, Yin G, Xie L, et al. Multifunctional 3D lattice metamaterials for vibration mitigation and energy absorption. Int J Mech Sci. 2022;233:107678. doi:10.1016/j.ijmecsci.2022.107678
  • Lin Q, Zhou J, Wang K, et al. Three-dimensional quasi-zero-stiffness metamaterial for low-frequency and wide complete band gap. Compos Struct. 2023;307:116656. doi:10.1016/j.compstruct.2022.116656
  • Ding W, Chen T, Chen C, et al. A three-dimensional twisted phononic crystal with omnidirectional bandgap based on inertial amplification by utilizing translation-rotation coupling. J Sound Vib. 2022;541:117307. doi:10.1016/j.jsv.2022.117307
  • Li L, Yang F, Guo Z, et al. Truss-plate hybrid lattice metamaterials with broadband vibration attenuation and enhanced energy absorption. Virtual Phys Prototyp. 2024;19(1):e2345386. doi:10.1080/17452759.2024.2345386
  • D’Alessandro L, Belloni E, Ardito R, et al. Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal. Appl Phys Lett. 2016;109(22):221907. doi:10.1063/1.4971290
  • Muhammad, Lim CW. Phononic metastructures with ultrawide low frequency three-dimensional bandgaps as broadband low frequency filter. Sci Rep. 2021;11. doi:10.1038/s41598-021-86520-8
  • D’Alessandro L, Zega V, Ardito R, et al. 3D auxetic single material periodic structure with ultra-wide tunable bandgap. Sci Rep. 2018;8(1):2262. doi:10.1038/s41598-018-19963-1
  • Ding W. Isotacticity in chiral phononic crystals for low-frequency bandgap. Int J Mech Sci. 2024. doi:10.1016/j.ijmecsci.2023.108678
  • An X, Lai C, He W, et al. Three-dimensional meta-truss lattice composite structures with vibration isolation performance. Extreme Mech Lett. 2019;33:100577. doi:10.1016/j.eml.2019.100577
  • Zhang L, Bai Z, Zhang Q, et al. On vibration isolation performance and crashworthiness of a three-dimensional lattice metamaterial. Eng Struct. 2023;292:116510. doi:10.1016/j.engstruct.2023.116510