0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Axial performances of the steel rebar reinforced column confined by the steel cable reinforced 3D concrete printing permanent formwork

ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Article: e2382163 | Received 21 May 2024, Accepted 10 Jul 2024, Published online: 26 Jul 2024

References

  • Liu Z, Li M, Quah TKN, et al. Comprehensive investigations on the relationship between the 3D concrete printing failure criterion and properties of fresh-state cementitious materials. Additive Manufacturing. 2023;76:103787. doi:10.1016/j.addma.2023.103787
  • Liu Z, Li M, Moo GSJ, et al. Effect of nanostructured silica additives on the extrusion-based 3D concrete printing application. Journal of Composites Science. 2023;7(5):191. doi:10.3390/jcs7050191
  • Mohan MK, Rahul AV, Schutter GD, et al. Extrusion-based concrete 3D printing from a material perspective: a state-of-the-art review. Cem Concr Compos. 2021;115:103855. doi:10.1016/j.cemconcomp.2020.103855
  • Tay YWD, Panda B, Paul SC, et al. 3D printing trends in building and construction industry: a review. Virtual Phys Prototyp. 2017;12(3):261–276. doi:10.1080/17452759.2017.1326724
  • Weng Y, Li M, Ruan S, et al. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. J Clean Prod. 2020;261:121245. doi:10.1016/j.jclepro.2020.121245
  • Liu Z, Li M, Wong TN, et al. Determine the effects of pore properties on the mechanical performances of 3D concrete printing units with experimental and numerical methods. Journal of Building Engineering. 2024;92:109730. doi:10.1016/j.jobe.2024.109730
  • Tay YWD, Lim JH, Li M, et al. Creating functionally graded concrete materials with varying 3D printing parameters. Virtual Phys Prototyp. 2022;17(3):662–681. doi:10.1080/17452759.2022.2048521
  • Mechtcherine V, Buswell R, Kloft H, et al. Integrating reinforcement in digital fabrication with concrete: A review and classification framework. Cem Concr Compos. 2021;119:103964. doi:10.1016/j.cemconcomp.2021.103964
  • Li Z, Hojati M, Wu Z, et al. A fresh and hardened properties of extrusion-based 3D-printed cementitious materials: a review. Sustainability. 2020;12(14):5628. doi:10.3390/su12145628
  • Hack N, Lauer WV. Mesh-mould: robotically fabricated spatial meshes as reinforced concrete formwork. Architectural Design. 2014;84(3):44–53. doi:10.1002/ad.1753
  • Souza MT, Ferreira IM, Guzi de Moraes E, et al. 3D printed concrete for large-scale buildings: an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. Journal of Building Engineering. 2020;32:101833. doi:10.1016/j.jobe.2020.101833
  • Marchment T, Sanjayan J. Mesh reinforcing method for 3D concrete printing. Autom Constr. 2020;109:102992. doi:10.1016/j.autcon.2019.102992
  • Baz B, Aouad G, Leblond P, et al. Mechanical assessment of concrete – steel bonding in 3D printed elements. Constr Build Mater. 2020;256:119457. doi:10.1016/j.conbuildmat.2020.119457
  • Li Z, Wang L, Ma G. Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions. Compos Part B Eng. 2020;187:107796. doi:10.1016/j.compositesb.2020.107796
  • Lim JH, Panda B, Pham Q-C. Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement. Constr Build Mater. 2018;178:32–41. doi:10.1016/j.conbuildmat.2018.05.010
  • Li Z, Ma G, Wang F, et al. Expansive cementitious materials to improve micro-cable reinforcement bond in 3D concrete printing. Cem Concr Compos. 2022;125:104304. doi:10.1016/j.cemconcomp.2021.104304
  • Gebhard L, Mata-Falcón J, Anton A, et al. Structural behaviour of 3D printed concrete beams with various reinforcement strategies. Eng Struct. 2021;240:112380. doi:10.1016/j.engstruct.2021.112380
  • Marchment T, Sanjayan J. Bond properties of reinforcing bar penetrations in 3D concrete printing. Autom Constr. 2020;120:103394. doi:10.1016/j.autcon.2020.103394
  • Vantyghem G, De Corte W, Shakour E, et al. 3D printing of a post-tensioned concrete girder designed by topology optimization. Autom Constr. 2020;112:103084. doi:10.1016/j.autcon.2020.103084
  • Salet TAM, Ahmed ZY, Bos FP, et al. Design of a 3D printed concrete bridge by testing. Virtual Phys Prototyp. 2018;13(3):222–236. doi:10.1080/17452759.2018.1476064
  • Du S, Teng F, Zhuang Z, et al. A BIM-enabled robot control system for automated integration between rebar reinforcement and 3D concrete printing. Virtual Phys Prototyp. 2024;19(1). doi:10.1080/17452759.2024.2332423
  • Teng F, Li M, Zhang D, et al. BIM-enabled collaborative-robots 3D concrete printing to construct MiC with reinforcement. HKIE Trans. 2023;30(1):106–115. doi:10.33430/V30N1THIE-2022-0023
  • Zhu B, Nematollahi B, Pan J, et al. 3D concrete printing of permanent formwork for concrete column construction. Cem Concr Compos. 2021;121:104039. doi:10.1016/j.cemconcomp.2021.104039
  • Chen Y, Zhang W, Zhang Y, et al. 3D printed concrete with coarse aggregates: built–in–stirrup permanent concrete formwork for reinforced columns. J Build Eng. 2023;70:106362. doi:10.1016/j.jobe.2023.106362
  • Wang L, Yang Y, Yao L, et al. Interfacial bonding properties of 3D printed permanent formwork with the post-casted concrete. Cem Concr Compos. 2022;128:104457. doi:10.1016/j.cemconcomp.2022.104457
  • Mander JB, Priestley MJ, Park R. Theoretical stress-strain model for confined concrete. J Struct Eng. 1988;114(8):1804–1826. doi:10.1061/(ASCE)0733-9445(1988)114:8(1804)
  • Obaidat AT, Ashour A, Galal K. Stress-Strain behavior of C-shaped confined concrete masonry boundary elements of reinforced masonry shear walls. J Struct Eng. 2018;144(8). doi:10.1061/(ASCE)ST.1943-541X.0002120
  • Xu N, Qian Y. Effects of fiber volume fraction, fiber length, water-binder ratio, and nanoclay addition on the 3D printability of strain-hardening cementitious composites (SHCC). Cem Concr Compos. 2023;139:105066. doi:10.1016/j.cemconcomp.2023.105066
  • Pham L, Tran P, Sanjayan J. Steel fibres reinforced 3D printed concrete: influence of fibre sizes on mechanical performance. Constr Build Mater. 2020;250:118785. doi:10.1016/j.conbuildmat.2020.118785
  • Weng Y, Li M, Wong TN, et al. Synchronized concrete and bonding agent deposition system for interlayer bond strength enhancement in 3D concrete printing. Autom Constr. 2021;123:103546. doi:10.1016/j.autcon.2020.103546
  • Bos FP, Bosco E, Salet TAM. Ductility of 3D printed concrete reinforced with short straight steel fibers. Virtual Phys Prototyp. 2019;14(2):160–174. doi:10.1080/17452759.2018.1548069
  • Weng Y, Li M, Liu Z, et al. Printability and fire performance of a developed 3D printable fibre reinforced cementitious composites under elevated temperatures. Virtual Phys Prototyp. 2019;14(3):284–292. doi:10.1080/17452759.2018.1555046
  • ASTM. C39 standard test method for compressive strength of cylindrical concrete specimens. American Society for Tesing and Materials; 2020. doi:10.1520/c0039_c0039m-20
  • ASTM. E8 standard test methods for tension testing of metallic materials, American Society for Tesing and Materials; 2022. doi:10.1520/e0008_e0008m-22
  • AlAjarmeh OS, Manalo AC, Benmokrane B, et al. Axial performance of hollow concrete columns reinforced with GFRP composite bars with different reinforcement ratios. Compos Struct. 2019;213:153–164. doi:10.1016/j.compstruct.2019.01.096
  • Eid R, Paultre P. Compressive behavior of FRP-confined reinforced concrete columns. Eng Struct. 2017;132:518–530. doi:10.1016/j.engstruct.2016.11.052
  • He L, Chow WT, Li H. Effects of interlayer notch and shear stress on interlayer strength of 3D printed cement paste. Additi Manuf. 2020;36:101390. doi:10.1016/j.addma.2020.101390
  • Hu X-Z. An asymptotic approach to size effect on fracture toughness and fracture energy of composites. Eng Fract Mech. 2002;69(5):555–564. doi:10.1016/S0013-7944(01)00102-3
  • Tian H, Zhou Z, Zhang Y, et al. Axial behavior of reinforced concrete column with ultra-high performance concrete stay-in-place formwork. Eng Struct. 2020;210:110403. doi:10.1016/j.engstruct.2020.110403
  • AlAjarmeh OS, Manalo AC, Benmokrane B, et al. Effect of spiral spacing and concrete strength on behavior of GFRP-reinforced hollow concrete columns. J Compos Constr. 2020;24(1). doi:10.1061/(ASCE)CC.1943-5614.0000987
  • Yang Y, Wu C, Liu Z, et al. Mechanical anisotropy of ultra-high performance fibre-reinforced concrete for 3D printing. Cem Concr Compos. 2022;125:104310. doi:10.1016/j.cemconcomp.2021.104310
  • Xu N, Qian Y, Yu J, et al. Tensile performance of 3D-printed strain-hardening cementitious composites (SHCC) considering material parameters, nozzle size and printing pattern. Cem Concr Compos. 2022;132:104601. doi:10.1016/j.cemconcomp.2022.104601
  • Piscesa B, Attard MM, Prasetya D, et al. Modeling cover spalling behavior in high strength reinforced concrete columns using a plasticity-fracture model. Eng Struct. 2019;196:109336. doi:10.1016/j.engstruct.2019.109336
  • Wang Y, Liu F, Yu J, et al. Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites. Constr Build Mater. 2020;251:118917. doi:10.1016/j.conbuildmat.2020.118917
  • Khan M, Rana MM, Zhang Y, et al. Compressive behaviour of engineered cementitious composites and concrete encased steel composite columns. J Constr Steel Res. 2020;167:105967. doi:10.1016/j.jcsr.2020.105967
  • BSI. Eurocode 4: design of composite steel and concrete structures. London: British Standards Institution; 2004.
  • ACI. ACI 318–19: building code requirements for structural concrete and commentary, American Concrete Institute USA; 2019.
  • AISC-LRFD. Specification for structural steel buildings. Chicago (IL): American Institute of Steel Construction; 2010.
  • Cai J, Pan J, Li X. Behavior of ECC-encased CFST columns under axial compression. Eng Struct. 2018;171:1–9. doi:10.1016/j.engstruct.2018.05.090
  • Teng JG, Lin G, Yu T. Analysis-Oriented stress-strain model for concrete under combined FRP-steel confinement. J Compos Constr. 2015;19(5). doi:10.1061/(asce)cc.1943-5614.0000549