15
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A comprehensive transformation-thermomechanical model on deformation history in directed energy deposition of high-speed steel

, ORCID Icon, , , &
Article: e2382164 | Received 03 May 2024, Accepted 14 Jul 2024, Published online: 30 Jul 2024

References

  • Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271–295.
  • Cheng J, Xing Y, Dong E, et al. An overview of laser metal deposition for cladding: defect formation mechanisms, defect suppression methods and performance improvements of laser-cladded layers. Materials (Basel). 2022;15(16):5522, doi:10.3390/ma15165522
  • Shrestha S, Panakarajupally RP, Kannan M, et al. Analysis of microstructure and mechanical properties of additive repaired Ti–6Al–4V by direct energy deposition. Mater Sci Eng A. 2021;806:140604, doi:10.1016/j.msea.2020.140604
  • Zheng D, Li R, Yuan T, et al. Microstructure and mechanical property of additively manufactured NiTi alloys: a comparison between selective laser melting and directed energy deposition. J Cent South Univ. 2021;28(4):1028–1042. doi:10.1007/s11771-021-4677-y
  • Fallah V, Amoorezaei M, Provatas N, et al. Phase-field simulation of solidification morphology in laser powder deposition of Ti–Nb alloys. Acta Mater. 2012;60(4):1633–1646. doi:10.1016/j.actamat.2011.12.009
  • Bidare P, Mehmeti A, Jiménez A, et al. High-density direct laser deposition (DLD) of CM247LC alloy: microstructure, porosity and cracks. Int J Adv Manuf Technol. 2022;120(11-12):8063–8074. doi:10.1007/s00170-022-09289-8
  • Saboori A, Aversa A, Marchese G, et al. Microstructure and mechanical properties of AISI 316L produced by directed energy deposition-based additive manufacturing: a review. Appl Sci. 2020;10(9):3310.
  • Joshi SS, Sharma S, Mazumder S, et al. Solidification and microstructure evolution in additively manufactured H13 steel via directed energy deposition: integrated experimental and computational approach. J Manuf Processes. 2021;68:852–866. doi:10.1016/j.jmapro.2021.06.009
  • Edwards A, Weisz-Patrault D. É. charkaluk, analysis and fast modelling of microstructures in duplex stainless steel formed by directed energy deposition additive manufacturing. Addit Manuf. 2023;61:103300.
  • Yang YP, Jamshidinia M, Boulware P, et al. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process. Comput Mech. 2017;61(5):599–615.
  • Lin X, Cao Y, Wu X, et al. Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel. Mater Sci Eng A. 2012;553:80–88. doi:10.1016/j.msea.2012.05.095
  • Silveira A, Fechte-Heinen R, Epp J. Microstructure evolution during laser-directed energy deposition of tool steel by In situ synchrotron X-ray diffraction. Addit Manuf. 2023;63:103408.
  • Zhao C, Parab ND, Li X, et al. Critical instability at moving keyhole tip generates porosity in laser melting. Science. 2020;370(6520):1080), doi:10.1126/science.abd1587
  • Gao W, Zhang Y, Ramanujan D, et al. The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des. 2015;69:65–89. doi:10.1016/j.cad.2015.04.001
  • Nie Z, Wang G, McGuffin-Cawley JD, et al. Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing. J Mater Process Technol. 2016;235:171–186. doi:10.1016/j.jmatprotec.2016.04.006
  • Grujić K. A review of thermal spectral imaging methods for monitoring high-temperature molten material streams. Sensors. 2023;23(3):1130), doi:10.3390/s23031130
  • Fetni S, Enrici TM, Niccolini T, et al. Thermal model for the directed energy deposition of composite coatings of 316L stainless steel enriched with tungsten carbides. Mater Des. 2021;204:109661.
  • Wei S, Wang G, Wang L, et al. Characteristics of microstructure and stresses and their effects on interfacial fracture behavior for laser-deposited maraging steel. Mater Des. 2018;137:56–67.
  • Li S, Kumar P, Chandra S, et al. Directed energy deposition of metals: processing, microstructures, and mechanical properties. Int Mater Rev. 2022;68(6):1–43.
  • Chen W, Xu L, Han Y, et al. Control of residual stress in metal additive manufacturing by low-temperature solid-state phase transformation: an experimental and numerical study. Addit Manuf. 2021;42:102016.
  • Xie D, Lv F, Liang H, et al. Towards a comprehensive understanding of distortion in additive manufacturing based on assumption of constraining force. Prototyping. 2021;16(sup1):S85–S97. doi:10.1080/17452759.2021.1881873
  • Zhang Y, Wang G, Shi W, et al. Modeling and analysis of deformation for spiral bevel gear in die quenching based on the hardenability variation. J Mater Eng Perform. 2017;26:3034–3047. doi:10.1007/s11665-017-2729-0
  • Weisz-Patrault D, Margerit P, Constantinescu A. Residual stresses in thin walled-structures manufactured by directed energy deposition: In-situ measurements, fast thermo-mechanical simulation and buckling. Addit Manuf. 2022;56:102903.
  • Wang Q, Jia J, Zhao Y, et al. In situ measurement of full-field deformation for arc-based directed energy deposition via digital image correlation technology. Addit Manuf. 2023;72:103635.
  • Bailey NS, Katinas C, Shin YC. Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses. J Mater Process Technol. 2017;247:223–233. doi:10.1016/j.jmatprotec.2017.04.020
  • Weisz-Patrault D. Fast simulation of temperature and phase transitions in directed energy deposition additive manufacturing. Addit Manuf. 2020;31:100990.
  • Yin H, Wang L, Felicelli SD. Comparison of two-dimensional and three-dimensional thermal models of the LENS® process. J Heat Transfer. 2008;130(10):102101), doi:10.1115/1.2953236
  • Peyre P, Aubry P, Fabbro R, et al. Analytical and numerical modelling of the direct metal deposition laser process. J Phys D: Appl Phys. 2008;41(2):025403), doi:10.1088/0022-3727/41/2/025403
  • Alimardani M, Toyserkani E, Huissoon JP. Three-dimensional numerical approach for geometrical prediction of multilayer laser solid freeform fabrication process. J Laser Appl. 2007;19(1):14–25. doi:10.2351/1.2402518
  • Wen S, Shin YC. Comprehensive predictive modeling and parametric analysis of multitrack direct laser deposition processes. J Laser Appl. 2011;23(2):22003), doi:10.2351/1.3567962
  • Papadakis L, Loizou A, Risse J, et al. A computational reduction model for appraising structural effects in selective laser melting manufacturing: a methodical model reduction proposed for time-efficient finite element analysis of larger components in selective laser melting. Virtual Phys Prototyping. 2014;9(1):17–25. doi:10.1080/17452759.2013.868005
  • Mukherjee T, Manvatkar V, De A, et al. Mitigation of thermal distortion during additive manufacturing. Scr Mater. 2017;127:79–83.
  • Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addit Manuf. 2016;12:240–251.
  • Yu J, Lin X, Ma L, et al. Influence of laser deposition patterns on part distortion, interior quality and mechanical properties by laser solid forming (LSF). Mater Sci Eng A. 2011;528(3):1094–1104. doi:10.1016/j.msea.2010.09.078
  • Bhadeshia HKDH, Svensson LE, Gretoft B. A model for the development of microstructure in low-alloy steel (Fe-Mn-Si-C) weld deposits. Acta Metall. 1985;33(7):1271–1283. doi:10.1016/0001-6160(85)90238-X
  • Bhadeshia H, Svensson L. Modelling the evolution of microstructure in steel weld metal. Math Modell Weld Phenom. 1993: 109–182.
  • Papazoglou VJ, Masubuchi K. Numerical analysis of thermal stresses during welding including phase transformation effects. J Pressure Vessel Technol. 1982;104(3):198–203. doi:10.1115/1.3264204
  • Taljat B, Radhakrishnan B, Zacharia T. Numerical analysis of GTA welding process with emphasis on post-solidification phase transformation effects on residual stresses. Mater Sci Eng A. 1998;246(1-2):45–54. doi:10.1016/S0921-5093(97)00729-6
  • Zhang Y, Shi W, Yang L, et al. The effect of hardenability variation on phase transformation of spiral bevel gear in quenching process. J Mater Eng Perform. 2016;25:2727–2735. doi:10.1007/s11665-016-2125-1
  • Plotkowski A, Saleeby K, Fancher CM, et al. Operando neutron diffraction reveals mechanisms for controlled strain evolution in 3D printing. Nat Commun. 2023;14(1):4950.
  • Wei HL, Mukherjee T, Zhang W, et al. Mechanistic models for additive manufacturing of metallic components. Prog Mater Sci. 2021;116:100703.
  • Liu L, Wang G, Ren K, et al. Marangoni flow patterns of molten pools in multi-pass laser cladding with added nano-CeO2. Addit Manuf. 2022;59:103156.
  • Wei S, Wang G, Shin YC, et al. Comprehensive modeling of transport phenomena in laser hot-wire deposition process. Int J Heat Mass Transfer. 2018;125:1356–1368. doi:10.1016/j.ijheatmasstransfer.2018.04.164
  • Hoadley AFA, Rappaz M. A thermal model of laser cladding by powder injection. Metall Trans B. 1992;23(5):631–642.
  • Ren K, Di Y, Wang G, et al. Forward calculation model for utilization of energy and mass in laser-directed energy deposition. Addit Manuf. 2023;68:103512.
  • Li Z. Innovative induction hardening process with pre-heating for improved fatigue performance of gear component. Gear Technol J Gear Manuf. 2014;31: 62–68.
  • Li Z, Lynn Ferguson B, Sims J, et al. Sources of distortion study during quench hardening using computer modeling). Heat Treat 2017: Proceedings of the 29th ASM Heat Treating Society; 2017; Columbus, Ohio, USA, p. 350–356.
  • Liu X, Wang G, Ren K, et al. On intertrack fluctuation of hardness and carbides in T15 steel laser cladding using thermodynamic calculation. J Mater Eng Perform. 2023;1–14.
  • Bramson MA. Infrared radiation: a handbook for applications. New York: Plenum Press; 1968.
  • Winchell P, Cohen M. The strength of martensite. Trans ASM. 1962;55:347–361.
  • Callister WD, Rethwisch DG. Fundamentals of materials science and engineering. London: Wiley; 2000.
  • Ruhl RC. Splat quenching of iron-carbon alloys. Trans Met Soc AIME. 1969;245:241–253.
  • Powder Diffraction File. Astm card 6-0688. Philadelphia (PA): ASTM.