21
Views
0
CrossRef citations to date
0
Altmetric
Research Article

4D printed NiTi variable-geometry inlet for aero engines

ORCID Icon, ORCID Icon, , , &
Article: e2382166 | Received 20 May 2024, Accepted 14 Jul 2024, Published online: 29 Jul 2024

References

  • Daynes S, Weaver PM. Stiffness tailoring using prestress in adaptive composite structures. Compos Struct. 2013;106:282–287. doi:10.1016/j.compstruct.2013.05.059
  • Zuo F-Y, Mölder S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle engines. Prog Aerosp Sci. 2019;106:108–144. doi:10.1016/j.paerosci.2019.03.001
  • Calkins FT, Mabe JH. Shape memory alloy based morphing aerostructures. J Mech Des. 2010;132(11):111012. doi:10.1115/1.4001119.
  • Zhang Y, Tan H-J, Li J-F, et al. Ramp shock regulation of supersonic inlet with shape memory alloy plate. AIAA J. 2018;56(4):1696–1702. doi:10.2514/1.J056318
  • Elahinia MH. Shape memory alloy actuators: design, fabrication, and experimental evaluation. Hoboken (NJ): John Wiley & Sons; 2016.
  • Mehrpouya M, Cheraghi Bidsorkhi H. MEMS applications of NiTi based shape memory alloys: a review. Micro and Nanosystems. 2016;8(2):79–91.
  • Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511–678. doi:10.1016/j.pmatsci.2004.10.001
  • Pitt D, Dunne J, White E, et al. SAMPSON smart inlet SMA powered adaptive lip design and static test. Paper presented at the 19th AIAA Applied Aerodynamics Conference; 2001.
  • Pitt D, Dunne J, White E. Design and test of a SMA powered adaptive aircraft inlet internal wall. Paper presented at the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 2002.
  • Chen G, Ma Y, Teng X, et al. Microstructure evolution and shape memory function mechanism of NiTi alloy by electron beam 4D printing. Appl Mater Today. 2023;31; doi:10.1016/j.apmt.2023.101749
  • Isaac CW, Duddeck F. Recent progress in 4D printed energy-absorbing metamaterials and structures. Virtual Phys Prototyp. 2023;18(1):e2197436. doi:10.1080/17452759.2023.2197436
  • Joshi S, Krishna Rawat CK, Rajamohan V, et al. 4D printing of materials for the future: opportunities and challenges. Appl Mater Today. 2020;18; doi:10.1016/j.apmt.2019.100490
  • Khoo ZX, Teoh JEM, Liu Y, et al. 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp. 2015;10(3):103–122. doi:10.1080/17452759.2015.1097054
  • Leist SK, Zhou J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys Prototyp. 2016;11(4):249–262. doi:10.1080/17452759.2016.1198630
  • Wang Y, Cui H, Esworthy T, et al. Emerging 4D printing strategies for next-generation tissue regeneration and medical devices. Adv Mater (Weinheim, Germany). 2022;34(20):2109198.
  • Zheng D, Li R, Kang J, et al. Achieving superelastic shape recoverability in smart flexible CuAlMn metamaterials via 3D printing. Int J Mach Tools Manuf. 2024;195:104110. doi:10.1016/j.ijmachtools.2023.104110
  • Poulton G. Aviation's material evolution. Airbus; 2017. Accessed 18 February 2017. https://www.airbus.com/en/newsroom/news/2017-02-aviations-material-evolution.
  • Elahinia M, Moghaddam NS, Andani MT, et al. Fabrication of NiTi through additive manufacturing: A review. Prog Mater Sci. 2016;83:630–663. doi:10.1016/j.pmatsci.2016.08.001
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271–295. doi:10.1016/j.mattod.2021.03.020
  • Xu R, Li R, Yuan T, et al. Towards the hydrogen pore in additively manufactured AlMgScZr alloy: influencing factors, formation kinetics mechanism. J Mater Sci Technol. 2024;199:125–144. doi:10.1016/j.jmst.2024.01.092
  • Niu P, Li R, Gan K, et al. Manipulating stacking fault energy to achieve crack inhibition and superior strength–ductility synergy in an additively manufactured high-entropy alloy. Adv Mater (Weinheim, Germany). 2024:2310160. doi:10.1002/adma.202310160.
  • Bian L, Thompson SM, Shamsaei N. Mechanical properties and microstructural features of direct laser-deposited Ti-6Al-4V. Jom. 2015;67:629–638. doi:10.1007/s11837-015-1308-9
  • Rao PG, Rao, PS, Krishna AG. Review on residual stresses in welded joints prepared under the influence of mechanical vibrations. J Manuf Technol Res. 2014;6(1/2):33.
  • Sticchi M, Schnubel D, Kashaev N, et al. Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components. Appl Mech Rev. 2015;67(1):010801. doi:10.1115/1.4028160
  • Kang J, Li R, Zheng D, et al. Unconventional precipitation and martensitic transformation behaviour of Ni-rich NiTi alloy fabricated via laser-directed energy deposition. Virtual Phys Prototyp. 2023;18(1). doi:10.1080/17452759.2023.2231415
  • Luo MJ, Li R, Zheng D, et al. Formation mechanism of inherent spatial heterogeneity of microstructure and mechanical properties of NiTi SMA prepared by laser directed energy deposition. Int J Extreme Manuf. 2023;5(3). doi:10.1088/2631-7990/acd96f
  • Dabbaghi H, Safaei K, Nematollahi M, et al. Additively manufactured NiTi and NiTiHf alloys: estimating service life in high-temperature oxidation. Materials. 2020;13(9):2104. doi:10.3390/ma13092104
  • Xu CH, Ma XQ, Shi S-Q, et al. Oxidation behavior of TiNi shape memory alloy at 450–750 C. Mater Sci Eng A. 2004;371(1–2):45–50. doi:10.1016/S0921-5093(03)00287-9
  • Oates GC. Aerothermodynamics of aircraft engine components. Reston (VA): AIAA; 1985.
  • Bansemer AR, Heymsfield AJ, Willis PT. In situ measurements of particle size distributions in Hurricane Humberto. Preprints. Paper presented at the 25th Conference on Hurricanes and Tropical Meteorology, American Meteorological Society, San Diego, CA; 2002.
  • Wu S-F, Grimble MJ, Breslin SG. Introduction to quantitative feedback theory for lateral robust flight control systems design. Control Eng Pract. 1998;6(7):805–828. doi:10.1016/S0967-0661(98)00053-7
  • Mehrpouya M, Gisario A, Elahinia M. Laser welding of NiTi shape memory alloy: A review. J Manuf Process. 2018;31:162–186. doi:10.1016/j.jmapro.2017.11.011
  • Zheng Y, Jiang F, Li L, et al. Effect of ageing treatment on the transformation behaviour of Ti–50.9at.% Ni alloy. Acta Mater. 2008;56(4):736–745. doi:10.1016/j.actamat.2007.10.020
  • Li R, Wang G, Zhao X, et al. Effect of path strategy on residual stress and distortion in laser and cold metal transfer hybrid additive manufacturing. Add Manuf. 2021;46:102203. doi:10.1016/j.addma.2021.102203
  • Zhang M, Duan Y, Fang X, et al. Tailoring the superelasticity of NiTi alloy fabricated by directed energy deposition through the variation of residual stress. Mater Des. 2022;224; doi:10.1016/j.matdes.2022.111311
  • Khalil-Allafi J, Dlouhy A, Eggeler G. Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater. 2002;50(17):4255–4274. doi:10.1016/S1359-6454(02)00257-4
  • Duerig TW, Bhattacharya K. The influence of the R-phase on the superelastic behavior of NiTi. Shape Memory Superelasticity. 2015;1:153–161. doi:10.1007/s40830-015-0013-4
  • Zhu J, Wu H-H, Wu Y, et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R-phase transformation. Acta Mater. 2021;207; doi:10.1016/j.actamat.2021.116665
  • Chen Y, Li A, Ma Z, et al. Step-wise R-phase transformation rendering high-stability two-way shape memory effect of a NiTiFe-Nb nanowire composite. Acta Mater. 2021;219:117258. doi:10.1016/j.actamat.2021.117258
  • Papagiannakis RG. Study of air inlet preheating and EGR impacts for improving the operation of compression ignition engine running under dual fuel mode. Energy Convers Manage. 2013;68:40–53. doi:10.1016/j.enconman.2012.12.019
  • Farokhi S. Aircraft propulsion: cleaner, leaner, and greener. Hoboken (NJ): John Wiley & Sons; 2021.
  • Lee J, Cho J. Effect of aspect ratio of elliptical inlet shape on performance of subsonic diffusing S-duct. J Mech Sci Technol. 2018;32:1153–1160. doi:10.1007/s12206-018-0218-5
  • Hamstra JW, Miller DN, Truax PP, et al. Active inlet flow control technology demonstration. The Aeronautical J. 2000;104(1040):473–479. doi:10.1017/S0001924000091971