0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of 3D-printed magnesium silicate hydrate cement mixes involving metakaolin as a substitute for silica source

&
Article: e2382173 | Received 20 May 2024, Accepted 10 Jul 2024, Published online: 25 Jul 2024

References

  • Wangler T, Roussel N, Bos FP, et al. Digital concrete: a review. Cem Concr Res. 2019: 123. doi:10.1016/j.cemconres.2019.105780
  • Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172–196. doi:10.1016/j.compositesb.2018.02.012
  • Sathish T, Vijayakumar M, Ayyangar AK. Design and fabrication of industrial components using 3D printing. Mater Today Proc. 2018;5(6):14489–14498. doi:10.1016/j.matpr.2018.03.036
  • Kalender M, Kılıç SE, Ersoy S, et al. Additive manufacturing and 3D printer technology in aerospace industry. 2019 9th International Conference on Recent Advances in Space Technologies (RAST), IEEE. 2019: 689–694. doi:10.1109/RAST.2019.8767881
  • Tetsuka H, Shin SR. Materials and technical innovations in 3D printing in biomedical applications. J Mater Chem B. 2020;8(15):2930–2950. doi:10.1039/D0TB00034E
  • Guo C, Zhang M, Bhandari B. Model building and slicing in food 3D printing processes: a review. Compr Rev Food Sci Food Saf. 2019;18(4):1052–1069. doi:10.1111/1541-4337.12443
  • Buswell RA, Leal de Silva WR, Jones SZ, et al. 3D printing using concrete extrusion: a roadmap for research. Cem Concr Res. 2018;112:37–49. doi:10.1016/j.cemconres.2018.05.006
  • Yu K, McGee W, Ng TY, et al. 3D-printable engineered cementitious composites (3DP-ECC): fresh and hardened properties. Cem Concr Res. 2021: 143. doi:10.1016/j.cemconres.2021.106388
  • Hamidi F, Aslani F. Additive manufacturing of cementitious composites: materials, methods, potentials, and challenges. Constr Build Mater. 2019;218:582–609. doi:10.1016/j.conbuildmat.2019.05.140
  • Zhong H, Zhang M. 3D printing geopolymers: A review. Cem Concr Compos. 2022;128:104455. doi:10.1016/j.cemconcomp.2022.104455
  • Peng Y, Unluer C. Development of alternative cementitious binders for 3D printing applications: a critical review of progress, advantages and challenges. Compos B Eng. 2023;252:110492. doi:10.1016/j.compositesb.2022.110492
  • Weng Y, Lu B, Li M, et al. Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing. Constr Build Mater. 2018;189:676–685. doi:10.1016/j.conbuildmat.2018.09.039
  • Souza MT, Ferreira IM, de Moraes EG, et al. 3D printed concrete for large-scale buildings: an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. J Build Eng. 2020;32:101833. doi:10.1016/j.jobe.2020.101833
  • Liu C, Chen Y, Xiong Y, et al. Influence of HPMC and SF on buildability of 3D printing foam concrete: from water state and flocculation point of view. Compos B Eng. 2022;242:110075. doi:10.1016/j.compositesb.2022.110075
  • Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct. 2015;49(4):1213–1220. doi:10.1617/s11527-015-0571-0
  • Jin Y, Xu J, Li Y, et al. Rheological properties, shape stability and compressive strength of 3D printed colored cement composites modified by needle-like pigment. Addit Manuf. 2022;57:102965. doi:10.1016/j.addma.2022.102965
  • Li M, Weng Y, Liu Z, et al. Optimizing of chemical admixtures for 3D printable cementitious materials by central composite design. Mater Sci Addit Manuf. 2022;1:16.
  • Peng Y, Unluer C. Analyzing the mechanical performance of fly ash-based geopolymer concrete with different machine learning techniques. Constr Build Mater. 2022;316:125785. doi:10.1016/j.conbuildmat.2021.125785
  • Peng Y, Unluer C. Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms. Resour Conserv Recycl. 2023;190:106812. doi:10.1016/j.resconrec.2022.106812
  • Weng Y, Li M, Ruan S, et al. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. J Clean Prod. 2020;261:121245. doi:10.1016/j.jclepro.2020.121245
  • Juenger MCG, Winnefeld F, Provis JL, et al. Advances in alternative cementitious binders. Cem Concr Res. 2011;41(12):1232–1243. doi:10.1016/j.cemconres.2010.11.012
  • Zhang T, Cheeseman C, Vandeperre L. Development of low pH cement systems forming magnesium silicate hydrate (MSH). Cem Concr Res. 2011;41(4):439–442. doi:10.1016/j.cemconres.2011.01.016
  • Zhang T, Vandeperre LJ, Cheeseman CR. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate. Cem Concr Res. 2014;65:8–14. doi:10.1016/j.cemconres.2014.07.001
  • Kumar S, Lei J, Yang E-H, et al. Influence of different additives on the rheology and microstructural development of MgO–SiO2 mixes. Compos B Eng. 2022;235:109784. doi:10.1016/j.compositesb.2022.109784
  • Weng Y, Ruan S, Li M, et al. Feasibility study on sustainable magnesium potassium phosphate cement paste for 3D printing. Constr Build Mater. 2019;221:595–603. doi:10.1016/j.conbuildmat.2019.05.053
  • Hay R, Celik K. Hydration, carbonation, strength development and corrosion resistance of reactive MgO cement-based composites. Cem Concr Res. 2020: 128. doi:10.1016/j.cemconres.2019.105941
  • Dung NT, Lesimple A, Hay R, et al. Formation of carbonate phases and their effect on the performance of reactive MgO cement formulations. Cem Concr Res. 2019: 125. doi:10.1016/j.cemconres.2019.105894
  • Khalil A, Wang X, Celik K. 3D printable magnesium oxide concrete: towards sustainable modern architecture. Addit Manuf. 2020: 33. doi:10.1016/j.addma.2020.101145
  • Peng Y, Unluer C. Interpretable machine learning-based analysis of hydration and carbonation of carbonated reactive magnesia cement mixes. J Clean Prod. 2024;434:140054. doi:10.1016/j.jclepro.2023.140054
  • Ruan S, Unluer C. Comparative life cycle assessment of reactive MgO and Portland cement production. J Clean Prod. 2016;137:258–273. doi:10.1016/j.jclepro.2016.07.071
  • Unluer C. Carbon dioxide sequestration in magnesium-based binders. Carbon Dioxide Sequestration in Cementitious Construction Materials; 2018; p. 129–173.
  • Ruan SQ, Yang EH, Unluer C. Production of reactive magnesia from desalination reject brine and its use as a binder. J CO2 Util. 2021: 44. doi:10.1016/j.jcou.2020.101383
  • Dong H, Unluer C, Yang E-H, et al. Synthesis of reactive MgO from reject brine via the addition of NH4OH. Hydrometallurgy. 2017;169:165–172. doi:10.1016/j.hydromet.2017.01.010
  • Zhang T, Zou J, Li Y, et al. Stabilization/solidification of strontium using magnesium silicate hydrate cement. Processes. 2020;8(2):163. doi:10.3390/pr8020163
  • Zhang T, Dieckmann E, Song S, et al. Properties of magnesium silicate hydrate (MSH) cement mortars containing chicken feather fibres. Constr Build Mater. 2018;180:692–697. doi:10.1016/j.conbuildmat.2018.05.292
  • Mármol G, Savastano Jr H. Study of the degradation of non-conventional MgO-SiO2 cement reinforced with lignocellulosic fibers. Cem Concr Compos. 2017;80:258–267. doi:10.1016/j.cemconcomp.2017.03.015
  • Zhang T, Vandeperre LJ, Cheeseman CR. Magnesium-silicate-hydrate cements for encapsulating problematic aluminium containing wastes. J Sustain Cem-Based Mater. 2012;1(1–2):34–45. doi:10.1080/21650373.2012.727322
  • Sonat C, Dung N, Unluer C. Performance and microstructural development of MgO–SiO2 binders under different curing conditions. Constr Build Mater. 2017;154:945–955. doi:10.1016/j.conbuildmat.2017.08.020
  • Jia Y, Wang B, Wu Z, et al. Role of sodium hexametaphosphate in MgO/SiO2 cement pastes. Cem Concr Res. 2016;89:63–71. doi:10.1016/j.cemconres.2016.08.003
  • Jin F, Al-Tabbaa A. Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature. Thermochim Acta. 2013;566:162–168. doi:10.1016/j.tca.2013.05.036
  • Jia Y, Zou Y, Jiang Y, et al. Effect of a Ca-rich environment on the reaction process of the MgO-activated SiO2 system. Cem Concr Compos. 2023;136:104855. doi:10.1016/j.cemconcomp.2022.104855
  • Peng Y, Unluer C. Investigation of the viscoelastic evolution of reactive magnesia cement pastes with accelerated hydration mechanisms. Cem Concr Compos. 2023;142:105191. doi:10.1016/j.cemconcomp.2023.105191
  • Kumar S, Sonat C, Yang E-H, et al. Performance of reactive magnesia cement formulations containing fly ash and ground granulated blast-furnace slag. Constr Build Mater. 2020: 232. doi:10.1016/j.conbuildmat.2019.117275
  • Dhakal M, Scott AN, Shah V, et al. Development of a MgO-metakaolin binder system. Constr Build Mater. 2021;284:122736. doi:10.1016/j.conbuildmat.2021.122736
  • Sonat C, Unluer C. Development of magnesium-silicate-hydrate (M-S-H) cement with rice husk ash. J Clean Prod. 2019;211:787–803. doi:10.1016/j.jclepro.2018.11.246
  • Zheng S, Zhou X, Xing W, et al. Analysis on the evolution characteristics of kaolin international trade pattern based on complex networks. Resources Policy. 2022;77:102783. doi:10.1016/j.resourpol.2022.102783
  • Sabir B, Wild S, Bai J. Metakaolin and calcined clays as pozzolans for concrete: a review. Cem Concr Compos. 2001;23(6):441–454. doi:10.1016/S0958-9465(00)00092-5
  • Siddique R, Klaus J. Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci. 2009;43(3-4):392–400. doi:10.1016/j.clay.2008.11.007
  • Shah V, Scott A. Hydration and microstructural characteristics of MgO in the presence of metakaolin and silica fume. Cem Concr Compos. 2021;121:104068. doi:10.1016/j.cemconcomp.2021.104068
  • Shah V, Dhandapani Y, Scott A. Pore structure characteristics of MgO–SiO2 binder. J Am Ceram Soc. 2021;104(11):6002–6014. doi:10.1111/jace.17971
  • Panda B, Sonat C, Yang E-H, et al. Use of magnesium-silicate-hydrate (M-S-H) cement mixes in 3D printing applications. Cem Concr Compos. 2021: 117. doi:10.1016/j.cemconcomp.2020.103901
  • Peng Y, Unluer C. Understanding the rheological behavior of reactive magnesia-metakaolin system in the context of digital construction. Cem Concr Compos. 2024;149:105534. doi:10.1016/j.cemconcomp.2024.105534
  • Yuan Q, Zhou D, Li B, et al. Effect of mineral admixtures on the structural build-up of cement paste. Constr Build Mater. 2018;160:117–126. doi:10.1016/j.conbuildmat.2017.11.050
  • Yuan Q, Zhou D, Khayat KH, et al. On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test. Cem Concr Res. 2017;99:183–189. doi:10.1016/j.cemconres.2017.05.014
  • Yuan Q, Lu X, Khayat KH, et al. Small amplitude oscillatory shear technique to evaluate structural build-up of cement paste. Mater Struct. 2017;50(2):1–12. doi:10.1617/s11527-016-0978-2
  • Alejandre F, Flores-Ales V, Villegas R, et al. Estimation of Portland cement mortar compressive strength using microcores. Influence of shape and size. Constr Build Mater. 2014;55:359–364. doi:10.1016/j.conbuildmat.2014.01.049
  • Joseph S, Unluer C. Effect of nanoparticles on the hydration of NaOH-activated GGBFS. J Am Ceram Soc. 2024;107(4):2196–2206. doi:10.1111/jace.19572
  • Peng Y, Ma K, Unluer C, et al. Method for calculating dynamic yield stress of fresh cement pastes using a coaxial cylinder system. J Am Ceram Soc. 2021;104(11):5557–5570. doi:10.1111/jace.17979
  • Qian Y, Kawashima S. Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cem Concr Compos. 2018;86:288–296. doi:10.1016/j.cemconcomp.2017.11.019
  • Perrot A, Lecompte T, Khelifi H, et al. Yield stress and bleeding of fresh cement pastes. Cem Concr Res. 2012;42(7):937–944. doi:10.1016/j.cemconres.2012.03.015
  • Kruger J, Zeranka S, van Zijl G. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Constr Build Mater. 2019;224:372–386. doi:10.1016/j.conbuildmat.2019.07.078
  • Peng Y, Unluer C. Advances in rheological measurement and characterization of fresh cement pastes. Powder Technol. 2023;429:118903. doi:10.1016/j.powtec.2023.118903
  • Mechtcherine V, Bos FP, Perrot A, et al. Extrusion-based additive manufacturing with cement-based materials–production steps, processes, and their underlying physics: a review. Cem Concr Res. 2020;132:106037. doi:10.1016/j.cemconres.2020.106037
  • Chen M, Li H, Yang L, et al. Rheology and shape stability control of 3D printed calcium sulphoaluminate cement composites containing paper milling sludge. Addit Manuf. 2022;54:102781. doi:10.1016/j.addma.2022.102781
  • Sonat C, Teo WW, Unluer C. Performance and microstructure of MgO-SiO2 concrete under different environments. Constr Build Mater. 2018;184:549–564. doi:10.1016/j.conbuildmat.2018.07.032
  • Dung NT, Unluer C. Development of MgO concrete with enhanced hydration and carbonation mechanisms. Cem Concr Res. 2018;103:160–169. doi:10.1016/j.cemconres.2017.10.011
  • Pillay DL, Olalusi OB, Kiliswa MW, et al. Engineering performance of metakaolin based concrete. Clean Eng Technol. 2022;6:100383. doi:10.1016/j.clet.2021.100383