40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel method combining finite element analysis and computed tomography reconstruction to master mechanical properties of lattice structures processed by laser powder bed fusion

, , , , , , & show all
Article: e2383302 | Received 06 Jun 2024, Accepted 17 Jul 2024, Published online: 29 Jul 2024

References

  • Liu Y, Wang Y, Ren H, et al. Ultrastiff metamaterials generated through a multilayer strategy and topology optimization. Nat Commun. 2024;15(1):2984. doi:10.1038/s41467-024-47089-8
  • Zhang J, Huang H, Liu G, et al. Stiffness and energy absorption of additive manufactured hybrid lattice structures. Virtual Phys Prototyp. 2021;16(4):428–443. doi:10.1080/17452759.2021.1954405
  • Rashed MG, Ashraf M, Mines RAW, et al. Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications. Mater Des. 2016;95:518–533. doi:10.1016/j.matdes.2016.01.146
  • Gao Q, Liao W-H. Energy absorption of thin walled tube filled with gradient auxetic structures-theory and simulation. Int J Mech Sci. 2021;201:106475. doi:10.1016/j.ijmecsci.20.106475
  • Pan C, Han Y, Lu J. Design and optimization of lattice structures: a review. Appl Sci. 2020;10(18):6374. doi:10.3390/app10186374
  • Maconachie T, Leary M, Lozanovski B, et al. Slm lattice structures: properties, performance, applications and challenges. Mater Des. 2019;183:108137. doi:10.1016/j.matdes.2019.108137
  • Zhang L, Feihb S, Daynes S, et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Addit Manuf. 2018;23:505–515. doi:10.1016/j.addma.2018.08.007
  • Deshpande VS, Fleck NA, Ashby MF. Effective properties of the octet-truss lattice material. J Mech Phys Solids. 2001;49(8):1747–1769. doi:10.1016/S0022-5096(01)00010-2
  • Kooistra GW, Wadley HNG. Lattice truss structures from expanded metal sheet. Mater Des. 2007;28(2):507–551. doi:10.1016/j.matdes.2005.08.013
  • Lee Y-H, Lee B-K, Jeon I, et al. Wire-woven bulk Kagome truss cores. Acta Mater. 2007;55(18):6084–6094. doi:10.1016/j.actamat.2007.07.023
  • Queheillalt DT, Murty Y, Wadley HNG. Mechanical properties of an extruded pyramidal lattice truss sandwich structure. Scr Mater. 2008;58(1):76–79. doi:10.1016/j.scriptamat.2007.08.041
  • Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing. Science. 2021;372(6545):1487. doi:10.1126/science.abg1487
  • Xiao Z, Yu W, Fu H, et al. Recent progress on microstructure manipulation of aluminium alloys manufactured via laser powder bed fusion. Virtual Phys Prototyp. 2023;18(1):e2125880. doi:10.1080/17452759.2022.2125880
  • Echeta I, Feng X, Dutton B, et al. Review of defects in lattice structures manufactured by powder bed fusion. Int J Adv Manuf Technol. 2020;106(5–6):2649–2668. doi:10.1007/s00170-019-04753-4
  • Alkhatib SE, Karrech A, Sercombe TB. Isotropic energy absorption of topology optimized lattice structure. Thin Wall Struct. 2023;182:110220. doi:10.1016/j.tws.2022.110220
  • Alkhatib SE, Xu S, Lu G, et al. Rate-dependent behaviour of additively manufactured topology optimised lattice structures. Thin Wall Struct. 2024;198:111710. doi:10.1016/j.tws.2024.111710
  • Gao Q, Ding Z, Liao W-H. Effective elastic properties of irregular auxetic structures. Compos Struct. 2022;287:115269. doi:10.1016/j.compstruct.2022.115269
  • Zhang L, Lifton J, Hu ZH, et al. Influence of geometric defects on the compression behaviour of thin shell lattices fabricated by micro laser powder bed fusion. Addit Manuf. 2022;58:103038. doi:10.1016/j.addma.2022.103038
  • Liu H, Gu D, Qi J, et al. Dimensional effect and mechanical performance of node-strengthened hybrid lattice structure fabricated by laser powder bed fusion. Virtual Phys Prototyp. 2023;18(1):e2240306. doi:10.1080/17452759.2023.2240306
  • Bevans B, Barrett C, Spears T, et al. Heterogeneous sensor data fusion for multiscale, shape agnostic flaw detection in laser powder bed fusion additive manufacturing. Virtual Phys Prototyp. 2023;18(1):e2196266. doi:10.1080/17452759.2023.2196266
  • Sanaei N, Fatemi A, Phan N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing. Mater Des. 2019;182:108091. doi:10.1016/j.matdes.2019.108091
  • Chen Y, Peng X, Kong L, et al. Defect inspection technologies for additive manufacturing. Int J Extreme Manuf. 2021;3(2):022002. doi:10.1088/2631-7990/abe0d0
  • Smith BA, Laursen CM, Bartanus J, et al. The interplay of geometric defects and porosity on the mechanical behavior of additively manufactured components. Exp Mech. 2021;61(4):685–698. doi:10.1007/s11340-021-00696-8
  • Fu J, Li H, Song X, et al. Multi-scale defects in powder-based additively manufactured metals and alloys. J Mater Sci Technol. 2022;122:165–199. doi:10.1016/j.jmst.2022.02.015
  • Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog Mater Sci. 2021;117:100724. doi:10.1016/j.pmatsci.2020.100724
  • Tan C, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich TiNi lattice structures: process optimisation, geometrical integrity, and phase transformations. Int J Mach Tools Manuf. 2019;141:19–29. doi:10.1016/j.ijmachtools.2019.04.002
  • Noronha J, Leary M, Qian M, et al. Geometrical parameters and mechanical properties of Ti6Al4V hollow-walled lattices. Mater Sci Eng A. 2022;840:142667. doi:10.1016/j.msea.2022.142667
  • Chen X, Liao W, Wei H, et al. Formation mechanisms and control strategies of metallurgical defects and microstructures during laser powder bed fusion of AlSi10Mg lattice structures. J Mater Res Technol. 2024;28:139–153. doi:10.1016/j.jmrt.2023.12.006
  • Jiang P, De Meter E, Basu S. The influence of defects on the elastic response of lattice structures resulting from additive manufacturing. Comput Mater Sci. 2021;199:110716. doi:10.1016/j.commatsci.2021.110716
  • Li D, Zhang X, Qin R, et al. Influence of processing parameters on AlSi10Mg lattice structure during selective laser melting: manufacturing defects, thermal behavior and compression properties. Opt Laser Technol. 2023;161:109182. doi:10.1016/j.optlastec.2023.109182
  • Liu L, Kamm P, García-Moreno F, et al. Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by selective laser melting. J Mech Phys Solids. 2017;107:160–184. doi:10.1016/j.jmps.2017.07.003
  • Gorguluarslan RM, Choi S-K, Saldana CJ. Uncertainty quantification and validation of 3D lattice scaffolds for computer-aided biomedical applications. J Mech Behav Biomed Mater. 2017;71:428–440. doi:10.1016/j.jmbbm.2017.04.011
  • Melancon D, Bagheri ZS, Johnston RB, et al. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants. Acta Biomater. 2017;63:350–368. doi:10.1016/j.actbio.2017.09.013
  • Vrána R, Koutecký T, Červinek O, et al. Deviations of the SLM produced lattice structures and their influence on mechanical properties. Materials (Basel). 2022;15(9):3144. doi:10.3390/ma15093144
  • Lozanovski B, Downing D, Tino R, et al. Non-destructive simulation of node defects in additively manufactured lattice structures. Addit Manuf. 2020;36:101593. doi:10.1016/j.addma.2020.101593
  • Shi K, Gu D, Liu H, et al. Process-structure multi-objective inverse optimisation for additive manufacturing of lattice structures using a physics-enhanced data-driven method. Virtual Phys Prototyp. 2023;18(1):e2266641. doi:10.1080/17452759.2023.2266641
  • Liu X, Gu D, Yuan L, et al. Effect of laser printing mode on surface topography, microstructure, and corrosion property of additive manufactured NiTi alloy. Adv Eng Mater. 2023;25:2300184. doi:10.1002/adem.202300184
  • Du L, Qian G, Zheng L, et al. Influence of processing parameters of selective laser melting on high-cycle and very-high-cycle fatigue behaviour of Ti-6Al-4 V. Fatigue Fract Eng Mater Struct. 2021;44(1):240–256. doi:10.1111/ffe.13361
  • Yang J, Gu D, Lin K, et al. Laser powder bed fusion of mechanically efficient helicoidal structure inspired by mantis shrimp. Int J Mech Sci. 2022;231:107573. doi:10.1016/j.ijmecsci.2022.107573
  • Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge: Cambridge University Press; 1997.
  • Yang J, Gu D, Lin K, et al. Laser 3D printed bio-inspired impact resistant structure: failure mechanism under compressive loading. Virtual Phys Prototyp. 2020;15(1):75–86. doi:10.1080/17452759.2019.1677124
  • Zener C. Anelasticity of metals. Nuovo Cim. 1958;7(Suppl 2):544–568. doi:10.1007/BF02751494
  • Hu JZ, Molavi-Zarandi M, Pasini D. Topology optimization of lattice support structure for cantilever beams fabricated via laser powder bed fusion. Adv Eng Mater. 2023:2300976. doi:10.1002/adem.202300976
  • Wang C, Gu X, Zhu J, et al. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing. Struct Multidiscip Optim. 2020;61(3):869–894. doi:10.1007/s00158-019-02408-2
  • Zhang L, Ma QP, Ding JH, et al. Design of elastically isotropic shell lattices from anisotropic constitutive materials for additive manufacturing. Addit Manuf. 2022;59:103185. doi:10.1016/j.addma.2022.103185
  • Guo H, Wang H, Li X, et al. Investigation of mechanical properties of laser powder bed fused AlSi10Mg lattice structures using GTN damage model. J Mater Res Technol. 2024;29:1937–1948. doi:10.1016/j.jmrt.2024.01.187
  • Li Z, Nie Y, Liu B, et al. Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting. Mater Des. 2020;192:108709. doi:10.1016/j.matdes.2020.108709
  • Khanna P, Sood S, Mishra P, et al. Analysis of compression and energy absorption behaviour of SLM printed AlSi10Mg triply periodic minimal surface lattice structures. Structures. 2024;64:106580. doi:10.1016/j.istruc.2024.106580
  • Arjunan A, Singh M, Baroutaji A, et al. Additively manufactured AlSi10Mg inherently stable thin and thick-walled a lattice with negative Poisson’s ratio. Compos Struct. 2020;247:112469. doi:10.1016/j.compstruct.2020.112469
  • Lei H, Li C, Meng J, et al. Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ-CT-based finite element analysis. Mater Des. 2019;169:107685. doi:10.1016/j.matdes.2019.107685
  • Wang X, Li X, Li Z, et al. A ribbed strategy disrupts conventional metamaterial deformation mechanisms for superior energy absorption. Virtual Phys Prototyp. 2024;19(1):e2337310. doi:10.1080/17452759.2024.2337310
  • Bai L, Yi C, Chen X, et al. Effective design of the graded strut of BCC lattice structure for improving mechanical properties. Materials (Basel). 2019;12(13):2192. doi:10.3390/ma12132192
  • Zhao M, Li X, Zhang D, et al. Design, mechanical properties and optimization of lattice structures with hollow prismatic struts. Int J Mech Sci. 2023;238:107842. doi:10.1016/j.ijmecsci.2022.107842
  • Lan X, Yang S, Dong Y, et al. Phenomenological methods for defining elasticity and failure of double-arrowhead metamaterials. Int J Mech Sci. 2023;252:108361. doi:10.1016/j.ijmecsci.2023.108361
  • Zhao M, Zhang DZ, Li Z, et al. Design, mechanical properties, and optimization of BCC lattice structures with taper struts. Compos Struct. 2022;295:115830. doi:10.1016/j.compstruct.2022.115830
  • Li Z, Zhai W, Li X, et al. Additively manufactured dual-functional metamaterials with customisable mechanical and sound-absorbing properties. Virtual Phys Prototyp. 2022;17(4):864–880. doi:10.1080/17452759.2022.2085119
  • Zhao M, Li XW, Zhang DZ, et al. Geometry effect on mechanical properties and elastic isotropy optimization of bamboo-inspired lattice structures. Addit Manuf. 2023;64:103438. doi:10.1016/j.addma.2023.103438