0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Additive manufacturing of high-performance aluminium nitride ceramics using high solid loading and low viscosity slurry

, , , , , & show all
Article: e2383306 | Received 31 Mar 2024, Accepted 17 Jul 2024, Published online: 25 Jul 2024

References

  • Dammak K, Elhami A. Thermal reliability-based design optimization using Kriging model of PCM based pin fin heat sink. Int J Heat Mass Transfer. 2021;166:120745. doi:10.1016/j.ijheatmasstransfer.2020.120745
  • Lin L, Wu H, Ni P, et al. Additive manufacturing of complex-shaped and high-performance aluminum nitride-based components for thermal management. Addit Manuf. 2022;52 :102671. doi:10.1016/j.addma.2022.102671
  • Cao C, Feng Y, Qiu T, et al. Effects of isothermal annealing on the oxidation behavior, mechanical and thermal properties of AlN ceramics. Ceram Int. 2017;43(12):9334–9342. doi:10.1016/j.ceramint.2017.04.098
  • Jiang H, Wang X, Fan G, et al. Effect of oxidation on flexural strength and thermal properties of AlN ceramics with residual stress and impedance spectroscopy analysis of defects and impurities. Ceram Int. 2019;45(10):13019–13023. doi:10.1016/j.ceramint.2019.03.232
  • Nie G, Sheng P, Li Y, et al. Enhanced mechanical and thermal properties of AlN ceramics via a chemical precipitation process. Int J Appl Ceram Technol. 2021;18(4):1255–1268. doi:10.1111/ijac.13742
  • Tummala RR. Ceramic and glass-ceramic packaging in the 1990s. J Am Ceram Soc. 1991;74(5):895–908. doi:10.1111/j.1151-2916.1991.tb04320.x
  • Huang D, Liu Z, Harris J, et al. High thermal conductive AlN substrate for heat dissipation in high-power LEDs. Ceram Int. 2019;45(1):1412–1415. doi:10.1016/j.ceramint.2018.09.171
  • Lin K, Nie G, Sheng P, et al. Effects of doping Al-metal powder on thermal, mechanical and dielectric properties of AlN ceramics. Ceram Int. 2022;48:36210–36217. doi:10.1016/j.ceramint.2022.08.178
  • Nie G, Li Y, Sheng P, et al. Microstructure refinement-homogenization and flexural strength improvement of Al2O3 ceramics fabricated by DLP-stereolithography integrated with chemical precipitation coating process. J Adv Ceram. 2021;10(4):790–808. doi:10.1007/s40145-021-0473-2
  • Huang D, Tian Z, Cui W, et al. Effects of Y2O3 and yttrium aluminates as sintering additives on the thermal conductivity of AlN ceramic substrates. Ceram Int. 2018;44(16):20556–20559. doi:10.1016/j.ceramint.2018.07.178
  • Suzuki TS, Sakka Y. Preparation of oriented bulk 5 wt% Y2O3-AlN ceramics by slip casting in a high magnetic field and sintering. Scr Mater. 2005;52(7):583–586. doi:10.1016/j.scriptamat.2004.11.033
  • Guo L, Yang J, Feng Y, et al. Non-aqueous gelcasting of AlN ceramics using a low-toxicity monomer (DMAA) as gelling agent. Ceram Int. 2018;44(2):1621–1626. doi:10.1016/j.ceramint.2017.10.083
  • Qin M, Lu H, Wu H, et al. Powder injection molding of complex-shaped aluminium nitride ceramic with high thermal conductivity. J Eur Ceram Soc. 2019;39(4):952–956. doi:10.1016/j.jeurceramsoc.2018.11.037
  • Zocca A, Colombo P, Gomes CM, et al. Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities. J Am Ceram Soc. 2015;98(7):1983–2001. doi:10.1111/jace.13700
  • Chen Z, Li Z, Li J, et al. 3D printing of ceramics: A review. J Eur Ceram Soc. 2019;39(4):661–687. doi:10.1016/j.jeurceramsoc.2018.11.013
  • Halloran JW. Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization. Annu Rev Mater Res. 2016;46:19–40. doi:10.1146/annurev-matsci-070115-031841
  • Li X, Chen Y. Vat-Photopolymerization-based ceramic manufacturing. J Mater Eng Perform. 2021;30(7):4819–4836. doi:10.1007/s11665-021-05920-z
  • Sheng P, Nie G, Li Y, et al. Enhanced curing behavior, mechanical and thermal properties of 3D printed aluminum nitride ceramics using a powder coating strategy. Addit Manuf. 2023;74:103732. doi:10.1016/j.addma.2023.103732
  • Li Q, An X, Liang J, et al. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades. J Mater Sci Technol. 2021;84:59–64. doi:10.1016/j.jmst.2020.12.027
  • Zhou M, Liu W, Wu H, et al. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography - Optimization of the drying and debinding processes. Ceram Int. 2016;42(10):11598–11602. doi:10.1016/j.ceramint.2016.04.050
  • He R, Liu W, Wu Z, et al. Fabrication of Complex-shaped Zirconia Ceramic Parts via a DLP- Stereolithography-based 3D printing method. Ceram Int. 2018;44(3):3412–3416. doi:10.1016/j.ceramint.2017.11.135
  • Liu W, Wu H, Tian Z, et al. 3D printing of dense structural ceramic microcomponents with low cost: Tailoring the sintering kinetics and the microstructure evolution. J Am Ceram Soc. 2019;102(5):2257–2262. doi:10.1111/jace.16241
  • Li Y, Wang M, Wu H, et al. Cure behavior of colorful ZrO2 suspensions during Digital light processing (DLP) based stereolithography process. J Eur Ceram Soc. 2019;39(15):4921–4927. doi:10.1016/j.jeurceramsoc.2019.07.035
  • Zhu W, Fu H, Xu Z, et al. Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology. J Eur Ceram Soc. 2018;38:4604–4613. doi:10.1016/j.jeurceramsoc.2018.06.022
  • Tang J, Chang H, Guo X, et al. Preparation of carbon fiber-reinforced SiC ceramics by stereolithography and secondary silicon infiltration. Ceram Int. 2022;48(17):25159–25167. doi:10.1016/j.ceramint.2022.05.178
  • Zou W, Yang P, Lin L, et al. Improving cure performance of Si3N4 suspension with a high refractive index resin for stereolithography-based additive manufacturing. Ceram Int. 2022;48(9):12569–12577. doi:10.1016/j.ceramint.2022.01.124
  • Huang S, Li Y, Yang P, et al. Cure behaviour and mechanical properties of Si3N4 ceramics with bimodal particle size distribution prepared using digital light processing. Ceram Int. 2023;49:12166–12172. doi:10.1016/j.ceramint.2022.12.068
  • Huang R, Jiang Q, Wu H, et al. Fabrication of complex shaped ceramic parts with surface-oxidized Si3N4 powder via digital light processing based stereolithography method. Ceram Int. 2019;45(4):5158–5162. doi:10.1016/j.ceramint.2018.11.116
  • Duan W, Li S, Wang G, et al. Thermal conductivities and mechanical properties of AlN ceramics fabricated by three dimensional printing. J Eur Ceram Soc. 2020;40(10):3535–3540. doi:10.1016/j.jeurceramsoc.2020.04.004
  • Lin L, Wu H, Li Y, et al. Effect of particle size on rheology, curing kinetics, and corresponding mechanical and thermal properties of aluminum nitride (AlN) ceramic by digital light processing (DLP)-based vat photopolymerization. J Eur Ceram Soc. 2024;44:184–192. doi:10.1016/j.jeurceramsoc.2023.08.048
  • Chen I-W, Wang X-H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature. 2000;404(6774):168–171. doi:10.1038/35004548
  • Kusunose T, Sekino T. Improvement in fracture strength in electrically conductive AlN ceramics with high thermal conductivity. Ceram Int. 2016;42(11):13183–13189. doi:10.1016/j.ceramint.2016.05.110
  • Lee HM, Kim DK. High-strength AlN ceramics by low-temperature sintering with CaZrO3-Y2O3 co-additives. J Eur Ceram Soc. 2014;34(15):3627–3633. doi:10.1016/j.jeurceramsoc.2014.05.008
  • Dong G, Chen X, Zhang X, et al. Thermal fatigue behaviour of Al2O3-DBC substrates under high temperature cyclic loading. Solder Surf Mount Technol. 2010;22(2):43–48. doi: 10.1108/09540911011036280
  • Gu Q, Sun L, Ji X, et al. High-performance and high-precision Al2O3 architectures enabled by high-solid-loading, graphene-containing slurries for top-down DLP 3D printing. J Eur Ceram Soc. 2023;43(1):130–142. doi:10.1016/j.jeurceramsoc.2022.09.048
  • Mu Y, Chen J, An X, et al. Effect of synergism of solid loading and sintering temperature on microstructural evolution and mechanical properties of 60 vol% high solid loading ceramic core obtained through stereolithography 3D printing. J Eur Ceram Soc. 2023;43(2):661–675. doi:10.1016/j.jeurceramsoc.2022.10.051
  • Griffith ML, Halloran JW. Freeform fabrication of ceramics via stereolithography. J Am Ceram Soc. 1996;79(10):2601–2608. doi:10.1111/j.1151-2916.1996.tb09022.x
  • Jang K-J, Kang J-H, Fisher JG, et al. Effect of the volume fraction of zirconia suspensions on the microstructure and physical properties of products produced by additive manufacturing. Dent Mater. 2019;35(5):e97–e106. doi:10.1016/j.dental.2019.02.001
  • Zhang K, Meng Q, Zhang X, et al. Roles of solid loading in stereolithography additive manufacturing of ZrO2 ceramic. Int J Refract Met Hard Mater. 2021;99:105604. doi:10.1016/j.ijrmhm.2021.105604
  • Zhang K, Meng Q, Cai N, et al. Effects of solid loading on stereolithographic additive manufactured ZrO2 ceramic: A quantitative defect study by X-ray computed tomography. Ceram Int. 2021;47:24353–24359. doi:10.1016/j.ceramint.2021.05.149
  • Liu J-C, Jean J-H, Li C-C. Dispersion of nano-sized γ-alumina powder in non-polar solvents. J Am Ceram Soc. 2006;89(3):882–887. doi:10.1111/j.1551-2916.2005.00858.x
  • Lin L, Wu H, Xu Y, et al. Fabrication of dense aluminum nitride ceramics via digital light processing-based stereolithography. Mater Chem Phys. 2020;249:122969. doi:10.1016/j.matchemphys.2020.122969
  • Xu X, Zhou S, Wu J, et al. Inter-particle interactions of alumina powders in UV-curable suspensions for DLP stereolithography and its effect on rheology, solid loading, and self-leveling behavior. J Eur Ceram Soc. 2021;41(4):2763–2774. doi:10.1016/j.jeurceramsoc.2020.12.004
  • Kim J-M, Kim H-N, Park Y-J, et al. Fabrication of transparent MgAl2O4 spinel through homogenous green compaction by microfluidization and slip casting. Ceram Int. 2015;41(10):13351–13360.
  • Zong X, Wang H, Gu H, et al. Highly transparent Mg0.27Al2.58O3.73N0.27 ceramic fabricated by aqueous gelcasting, pressureless sintering, and post-HIP. J Am Ceram Soc. 2019;102(11):6507–6516. doi:10.1111/jace.16544
  • Lin K, Zong X, Sheng P, et al. Effects of SmF3 addition on aluminum nitride ceramics via pressureless sintering. J Eur Ceram Soc. 2023;43(15):6804–6814. doi:10.1016/j.jeurceramsoc.2023.07.051
  • Lu H, Qin M, Wu H, et al. Effect of AlN powders on the debinding and sintering behavior, and thermal conductivity of injection molded AlN ceramics. Ceram Int. 2019;45(18):23890–23894. doi:10.1016/j.ceramint.2019.08.183
  • Leitner J, Voňka P, Sedmidubský D, et al. Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim Acta. 2010;497(1):7–13. doi:10.1016/j.tca.2009.08.002
  • Wurst JC, Nelson JA. Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics. J Am Ceram Soc. 1972;55:109. doi:10.1111/j.1151-2916.1972.tb11224.x
  • Zuo F, Badev A, Saunier S, et al. Microwave versus conventional sintering: estimate of the apparent activation energy for densification of α-alumina and zinc oxide. J Eur Ceram Soc. 2014;34(12):3103–3110. doi:10.1016/j.jeurceramsoc.2014.04.006
  • Gang C, Jia W, Ning H, et al. Strengthening mechanisms based on reinforcement distribution uniformity for particle reinforced aluminum matrix composites. Trans Nonferrous Metals Soc China. 2018;28(12):2395–2400. doi:10.1016/S1003-6326(18)64885-X
  • Zhang L, Hui X, Chen J. Effects of terrain slope on water distribution and application uniformity for sprinkler irrigation. Int J Agric Biol Eng. 2018;11(3):120–125. doi:10.25165/j.ijabe.20181103.2901
  • Lu Y, Mei Z, Zhang J, et al. Flexural strength and Weibull analysis of Y-TZP fabricated by stereolithographic additive manufacturing and subtractive manufacturing. J Eur Ceram Soc. 2020;40(3):826–834. doi:10.1016/j.jeurceramsoc.2019.10.058
  • Nie G, Li Y, Sheng P, et al. Fabrication of Al2O3/AlN composite ceramics with enhanced performance via a heterogeneous precipitation coating process. Ceram Int. 2020;46(13):21156–21165. doi:10.1016/j.ceramint.2020.05.193
  • Krieger IM, Dougherty TJ. A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres. Trans Soc Rheol. 2000;3(1):137–152. doi:10.1122/1.548848
  • Liu D-M. Particle packing and rheological property of highly-concentrated ceramic suspensions: φm determination and viscosity prediction. J Mater Sci. 2000;35:5503–5507. doi:10.1023/A:1004885432221
  • Mueller S, Llewellin EW, Mader HM. The rheology of suspensions of solid particles. Proc R Soc A Math Phys Eng Sci. 2010;466(2116):1201–1228. doi:10.1098/rspa.2009.0445
  • Camargo ILDC, Morais MM, Fortulan CA, et al. A review on the rheological behavior and formulations of ceramic suspensions for vat photopolymerization. Ceram Int. 2021;47(9):11906–11921. doi:10.1016/j.ceramint.2021.01.031
  • Li K, Zhao Z. The effect of the surfactants on the formulation of UV-curable SLA alumina suspension. Ceram Int. 2017;43(6):4761–4767. doi:10.1016/j.ceramint.2016.11.143
  • Liu Y, Cheng L, Li H, et al. Formation mechanism of stereolithography of Si3N4 slurry using silane coupling agent as modifier and dispersant. Ceram Int. 2020;46(10):14583–14590. doi:10.1016/j.ceramint.2020.02.258
  • Sun J, Binner J, Bai J. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography. J Eur Ceram Soc. 2019;39(4):1660–1667. doi:10.1016/j.jeurceramsoc.2018.10.024
  • Adake CV, Bhargava P, Gandhi P. Effect of surfactant on dispersion of alumina in photopolymerizable monomers and their UV curing behavior for microstereolithography. Ceram. Int. 2015;41(4):5301–5308. doi:10.1016/j.ceramint.2014.12.066
  • Tomeckova V, Halloran JW. Critical energy for photopolymerization of ceramic suspensions in acrylate monomers. J Eur Ceram Soc. 2010;30(16):3273–3282. doi:10.1016/j.jeurceramsoc.2010.08.003
  • Gentry SP, Halloran JW. Absorption effects in photopolymerized ceramic suspensions. J Eur Ceram Soc. 2013;33(10):1989–1994. doi:10.1016/j.jeurceramsoc.2013.03.004
  • Song X, Chen Z, Lei L, et al. Piezoelectric component fabrication using projection-based stereolithography of barium titanate ceramic suspensions. Rapid Prototyp J. 2017;23(1):44–53. doi:10.1108/RPJ-11-2015-0162
  • Zhang K, He R, Ding G, et al. Effects of fine grains and sintering additives on stereolithography additive manufactured Al2O3 ceramic. Ceram Int. 2021;47(2):2303–2310. doi:10.1016/j.ceramint.2020.09.071
  • Harris J, Youngman R, Teller R. On the nature of the oxygen-related defect in aluminum nitride. J Mater Res. 1990;5(8):1763–1773. doi:10.1557/JMR.1990.1763
  • Yin S, Jiang S, Pan L, et al. Effects of solid loading and calcination temperature on microstructure and properties of porous Si3N4 ceramics by aqueous gelcasting using DMAA system. Ceram. Int. 2019;45(16):19925–19933. doi:10.1016/j.ceramint.2019.06.250
  • Khor K, Cheng K, Yu L, et al. Thermal conductivity and dielectric constant of spark plasma sintered aluminum nitride. Mater Sci Eng A. 2003;347(1-2):300–305. doi:10.1016/S0921-5093(02)00601-9
  • Medraj M, Baik Y, Thompson W, et al. Understanding AlN sintering through computational thermodynamics combined with experimental investigation. J Mater Process Technol. 2005;161(3):415–422. doi:10.1016/j.jmatprotec.2004.05.031
  • He X, Ye F, Zhang H, et al. Effect of Sm2O3 content on microstructure and thermal conductivity of spark plasma sintered AlN ceramics. J Alloys Compd. 2009;482(1-2):345–348. doi:10.1016/j.jallcom.2009.04.013
  • Tajika M, Matsubara H, Rafaniello W. Effect of grain contiguity on the thermal diffusivity of aluminum nitride. J Am Ceram Soc. 1999;82(6):1573–1575. doi:10.1111/j.1151-2916.1999.tb01958.x
  • Terao R, Tatami J, Meguro T, et al. Fracture behavior of AlN ceramics with rare earth oxides. J Eur Ceram Soc. 2002;22(7):1051–1059. doi:10.1016/S0955-2219(01)00422-8
  • Xu F, Zhang Z, Shi X, et al. Effects of adding yttrium nitrate on the mechanical properties of hot-pressed AlN ceramics. J Alloys Compd. 2011;509(35):8688–8691. doi:10.1016/j.jallcom.2011.05.110
  • Zhan J, Cao Y, Zhang H, et al. Low-temperature sintering of AlN ceramics by Sm2O3-Y2O3-CaO sintering additives formed via decomposition of nitrate solutions. J Mater Eng Perform. 2017;26:453–459. doi:10.1007/s11665-016-2453-1
  • Tatami J, Yasuda K, Matsuo Y, et al. Stochastic analysis on crack path of polycrystalline ceramics based on the difference between the released energies in crack propagation. J Mater Sci. 1997;32:2341–2346. doi:10.1023/A:1018588620081
  • Du X, Qin M, Rauf A, et al. Structure and properties of AlN ceramics prepared with spark plasma sintering of ultra-fine powders. Mater Sci Eng A. 2008;496(1-2):269–272. doi:10.1016/j.msea.2008.05.027
  • Lee R-R. Development of high thermal conductivity aluminum nitride ceramic. J Am Ceram Soc. 1991;74(9):2242–2249. doi:10.1111/j.1151-2916.1991.tb08291.x
  • Rauchenecker J, Rabitsch J, Schwentenwein M, et al. Additive manufacturing of aluminum nitride ceramics with high thermal conductivity via digital light processing. Open Ceramics. 2022;9:100215. doi:10.1016/j.oceram.2021.100215
  • Wang J, Wu H, Qi Y, et al. High-performance aluminum nitride made by Vat photopolymerization through optimization of resin refractive index and plasticizer content. Ceram Int. 2024;50(9):14896–14906. doi: 10.1016/j.ceramint.2024.01.405
  • Lin L, Wu H, Lin K, et al. Effect of yttrium nitrate coating on the vat photopolymerization forming process and sintering properties of aluminum nitride ceramics. Addit Manuf. 2024;84:104115. doi:10.1016/j.addma.2024.104115
  • Baek S-H, Jeong H, Ryu S-S. Aln with high strength and high thermal conductivity based on an MCAS-Y2O3-YSZ multi-additive system. J Eur Ceram Soc. 2022;42(3):898–904. doi:10.1016/j.jeurceramsoc.2021.11.012
  • Wei X, Zhang H, Dang J, et al. Phase and microstructure optimization of grain boundary oxides and its effect on the thermal conductivity of Y2O3-doped AlN ceramics. J Eur Ceram Soc. 2022;42(12):4855–4865. doi:10.1016/j.jeurceramsoc.2022.05.042