0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure, mechanical properties and corrosion resistance of laser direct energy deposited AlMo0.25FeCoCrNi2.1 high-entropy alloy: adjusted by annealing heat treatment

, , , , &
Article: e2385569 | Received 14 Jun 2024, Accepted 23 Jul 2024, Published online: 02 Aug 2024

References

  • Cantor B, Chang ITH, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213–218. doi:10.1016/j.msea.2003.10.257
  • Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303. doi:10.1002/adem.200300567
  • Wang H, He Q, Gao X, et al. Multifunctional high entropy alloys enabled by severe lattice distortion. Adv Mater. 2024;36(17):2305453. doi:10.1002/adma.202305453
  • Krishna S, Noble N, Radhika N, et al. A comprehensive review on advances in high entropy alloys: fabrication and surface modification methods, properties, applications, and future prospects. J Manuf Process. 2024;109:583–606. doi:10.1016/j.jmapro.2023.12.039
  • Zhang Y, Zhou Y, Lin J, et al. Solid-Solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10(6):534–538. doi:10.1002/adem.200700240
  • Shim SH, Pouraliakbar H, Minouei H, et al. Characterization of the microscale/nanoscale hierarchical microstructure of an as-cast CrMnFeNiCu high-entropy alloy with promising mechanical properties. J Alloys Compd. 2023;954:170091. doi:10.1016/j.jallcom.2023.170091
  • Shim SH, Pouraliakbar H, Lee BJ, et al. Strengthening and deformation behavior of as-cast CoCrCu1.5MnNi high entropy alloy with micro-/nanoscale precipitation. Mater Sci Eng A. 2022;853:143729. doi:10.1016/j.msea.2022.143729
  • Miracle D, Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi:10.1016/j.actamat.2016.08.081
  • Qin Y, Wang Y, Guan S, et al. High-pressure preparation of high-hardness CoCrFeNiMo0.4 high-entropy alloy. Int J Refract Met Hard Mater. 2022;102:105718. doi:10.1016/j.ijrmhm.2021.105718
  • Jin D, Wang Z, Yuan J, et al. High-strength and energetic Al2Ti6Zr2Nb3Ta3 high entropy alloy containing a cuboidal BCC/B2 coherent microstructure. J Alloys Compd. 2023;931:167546. doi:10.1016/j.jallcom.2022.167546
  • Gorr B, Azim M, Christ H, et al. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J Alloys Compd. 2015;624:270–278. doi:10.1016/j.jallcom.2014.11.012
  • Samoilova O, Shaburova N, Ostovari Moghaddam A, et al. Al0.25CoCrFeNiSi0.6 high entropy alloy with high hardness and improved wear resistance. Mater Lett. 2022;328:133190. doi:10.1016/j.matlet.2022.133190
  • Ren Y, Jia Q, Du Y, et al. A wear-resistant metastable CoCrNiCu high-entropy alloy with modulated surface and subsurface structures. Friction. 2022;10:1722–1738. doi:10.1016/j.jallcom.2020.154034
  • Jiang D, Cui H, Zhao X, et al. Effect of potential difference in CoXCrNiMoCB high-entropy alloy coatings on corrosion resistance improvement. Mater Lett. 2023;330:133299. doi:10.1016/j.matlet.2022.133299
  • Shuang S, Yu Q, Gao X, et al. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy. J Mater Sci Technol. 2022;109:197–208. doi:10.1016/j.jmst.2021.08.069
  • Zhang Y, Zuo T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi:10.1016/j.pmatsci.2013.10.001
  • Lu Y, Dong Y, Guo S, et al. A promising New class of high-temperature alloys: eutectic high-entropy alloys. Rep. 2014;4:6200. doi:10.1038/srep06200
  • Gao X, Lu Y, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 2017;141:59–66. doi:10.1016/j.actamat.2017.07.041
  • He L, Wu S, Dong A, et al. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: synergizing strength and ductility. J Mater Sci Technol. 2022;117:133–145. doi:10.1016/j.jmst.2021.11.049
  • Vikram R, Murty B, Fabijanic D, et al. Insights into micro-mechanical response and texture of the additively manufactured eutectic high entropy alloy AlCoCrFeNi2.1. J Alloys Compd. 2020;827:154034. doi:10.1016/j.jallcom.2020.154034
  • Duan X, Han T, Guan X, et al. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi 2.1 with precipitates. J Mater Sci Technol. 2023;136:97–108. doi:10.1016/j.jmst.2022.07.023
  • Shi H, Fetzer R, Jianu A, et al. Influence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb. Corros Sci. 2021;190:109659. doi:10.1016/j.corsci.2021.109659
  • Matusiak K, Berent K, Marciszko M, et al. The experimental and theoretical study on influence of Al and Cu contents on phase abundance changes in AlxCuyFeCrNiCo HEA system. J Alloys Compd. 2019;790:837–846. doi:10.1016/j.jallcom.2019.03.162
  • Nadutov V, Makarenko S, Volosevich P. Effect of aluminum on fine structure and distribution of chemical elements in high-entropy alloys AlxFeNiCoCuCr. Phys Met Metall. 2015;116(5):439–444. doi:10.1134/S0031918X15030096
  • Raja Rao K, Sinha S. Strengthening of AlCoCrFeNi based high entropy alloy with nano- Y2O3 dispersion. Materials Science and Engineering: B. 2022;281:115720. doi:10.1016/j.mseb.2022.115720
  • Rogal Ł, Kalita D, Litynska-Dobrzynska L. Cocrfemnni high entropy alloy matrix nanocomposite with addition of Al2O3. Intermetallics. 2017;86:104–109. doi:10.1016/j.intermet.2017.03.019
  • Rogal L, Kalita D, Tarasek A, et al. Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J Alloys Compd. 2017;708:344–352. doi:10.1016/j.jallcom.2017.02.274
  • Li Z, Xie D, liu Y, et al. Effect of WC on the microstructure and mechanical properties of laser-clad AlCoCrFeNi2.1 eutectic high-entropy alloy composite coatings. J Alloys Compd. 2024;976:173219. doi:10.2139/ssrn.4576412
  • Zhang J, Li J, Jin T, et al. Effect of Mo concentration on creep properties of a single crystal nickel-base superalloy. Materials Science & Engineering A. 2010;527:3051–3056. doi:10.1007/BF02782418
  • Cichocki K, Bała P, Kozieł T, et al. Effect of Mo on phase stability and properties in FeMnNiCo high-entropy alloys. Metallurgical and Materials Transactions A. 2022;53(5):1749–1760. doi:10.1007/s11661-022-06629-x
  • Qin G, Chen R, Zheng H, et al. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition. J Mater Sci Technol. 2019;35(4):578–583. doi:10.1016/j.jmst.2018.10.009
  • Li J, Yamanaka K, Chiba A. Significant lattice-distortion effect on compressive deformation in Mo-added CoCrFeNi-based high-entropy alloys. Mater Sci Eng A. 2022;830:142295. doi:10.1016/j.msea.2021.142295
  • Shang X, Wang Z, Wu Q, et al. Effect of Mo addition on corrosion behavior of high-entropy alloys CoCrFeNiMox in aqueous environments. Acta Metallurgica Sinica (English Letters). 2019;32(1):41–51. doi:10.1007/s40195-018-0812-7
  • Wu H, Zhang S, Wang Z, et al. New studies on wear and corrosion behavior of laser cladding FeNiCoCrMox high entropy alloy coating: The role of Mo. Int J Refract Met Hard Mater. 2022;102:105721. doi:10.1016/j.ijrmhm.2021.105721
  • Ye Q, Yang G, Yang B. Effect of aging on microstructure and property of AlCoCrFeMo0.05Ni2 high entropy alloy. Mater Sci Eng A. 2019;760:1–6. doi:10.1016/j.msea.2019.05.058
  • An J, Zhou Y, Yan M, et al. Effect of heat treatment on microstructure and mechanical properties of direct energy deposited AlCoCrFeNi2.1. J Therm Spray Technol. 2022;31(5):1634–1648. doi:10.1016/j.jallcom.2023.168843
  • Shim, S. H., Pouraliakbar, H., Kim, Y. K., et al., Exploring the impact of heat treatment on the transformation of hierarchical microstructure and mechanical properties in a non-equiatomic CrMnFeNiCu high-entropy alloy with a reversible structure. J Alloys Compd. 2023, 969, 172514. doi:10.1016/j.jallcom.2023.172514
  • Peng P, Feng X, Li S, et al. Effect of heat treatment on microstructure and mechanical properties of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy. J Alloys Compd. 2023;939:168843. doi:10.3390/ma16227161
  • Ye Q, Yang G, Yang B. Segregation engineering in a promising heat-resistant AlCoCrFeMo0.05Ni2 high entropy alloy. J Alloys Compd. 2021;869:159336. doi:10.1016/j.jallcom.2021.159336
  • Liu W, Lu Z, He J, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 2016;116:332–342. doi:10.1016/j.actamat.2016.06.063
  • Hsu C, Wang W, Tang W, et al. Microstructure and mechanical properties of New AlCoxCrFeMo0.5Ni high-entropy alloys. Adv Eng Mater. 2010;12(1-2):44–49. doi:10.1002/adem.200900171
  • Sui Q, Wang Z, Wang J, et al. Additive manufacturing of CoCrFeNiMo eutectic high entropy alloy: microstructure and mechanical properties. J Alloys Compd. 2022;913:165239. doi:10.1016/j.jallcom.2022.165239
  • Shun T, Chang L, Shiu M. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater Sci Eng A. 2012;556:170–174. doi:10.1016/j.msea.2012.06.075
  • Wong S, Shun T, Chang C, et al. Microstructures and properties of Al0.3CoCrFeNiMnx high-entropy alloys. Mater Chem Phys. 2018;210:146–151. doi:10.1016/j.matchemphys.2017.07.085
  • Guo W, Zhang Y, Ding N, et al. Understanding the microstructure evolution characteristics and mechanical properties of an AlCoCrFeNi2.1 high entropy alloy fabricated by laser energy deposition. Mater Sci Eng A. 2023;869:144795. doi:10.1016/j.msea.2023.144795
  • Du B, Hu Z, Sheng L, et al. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys. J Mater Sci Technol. 2021;60:44–55. doi:10.1016/j.jmst.2020.05.021
  • Du B, Hu Z, Sheng L, et al. Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy. J Mater Sci Technol. 2018;34(10):1805–1816. doi:10.1016/j.jmst.2018.02.007
  • Li M, Zeng C, Luo S, et al. Electrochemical corrosion characteristics of type 316 stainless steel in simulated anode environment for PEMFC. Electrochim Acta. 2003;48(12):1735–1741. doi:10.1016/S0013-4686(03)00113-0
  • Gu X, Huang Q, Chen J, et al. Optimizing corrosion resistance of equiatomic AlCoCrFeNi high entropy alloys via heat treatment. J Alloys Compd. 2023;968:172091. doi:10.1016/j.jallcom.2023.172091
  • Duan X, Han T, Guan X, et al. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates. J Mater Sci Technol. 2023;136:97–108. doi:10.1016/j.jmst.2022.07.023
  • Huntz A, Schütze M. Stresses generated during oxidation sequences and high temperature fracture. Mater High Temp. 1994;12(2–3):151–161. doi:10.1080/09603409.1994.11689481
  • Hayes J, Gray J, Szmodis A, et al. Influence of chromium and molybdenum on the corrosion of nickel-based alloys. Corrosion. 2006;62(6):491–500. doi:10.5006/1.3279907