2,714
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs

, , , , , , , , , , , , , , , , & show all

  • Adams M, Chen W, Holcdorf D, McCusker M W, Howe P D L, Gaillard F. Computer vs human: deep learning versus perceptual training for the detection of neck of femur fractures. J Med Imaging Radiat Oncol 2019; 63(1): 27–32.
  • Badgeley M A, Zech J R, Oakden-Rayner L, Glicksberg B S, Liu M, Gale W, McConnell M V, Percha B, Snyder T M, Dudley J T. Deep learning predicts hip fracture using confounding patient and healthcare variables. NPJ Digit Med 2019; 2: 31.
  • Blüthgen C, Becker A S, Vittoria de Martini I, Meier A, Martini K, Frauenfelder T. Detection and localization of distal radius fractures: deep learning system versus radiologists. Eur J Radiol 2020; 126(February): 108925.
  • Chellam W B. Missed subtle fractures on the trauma-meeting digital projector. Injury 2016; 47(3): 674–6.
  • Cheng C, Ho T, Lee T, Chang C, Chou C, Chen C, Chung I-F, Liao C-H. Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. Eur Radiol 2019; 29(10): 5469–77.
  • Chollet F. Xception: Deep learning with depthwise separable convolutions. Cornell University [pdf]; 2016.
  • Chung S W, Han S S, Lee J W, Oh K, Kim N R, Yoon J P, Kim J Y, Moon S H, Kwon J, Lee H, Noh Y, Kim Y. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop 2018; 89(4): 468–73.
  • Feng X, Jiang Y, Yang X, Du M, Li X. Computer vision algorithms and hardware implementations: a survey. Integration 2019; 69(August): 309–20.
  • Gan K, Xu D, Lin Y, Shen Y, Zhang T, Hu K, Zhou K, Bi M, Pan L, Wu W, Liu Y. Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments. Acta Orthop 2019; 90(4): 394–400.
  • Greenspan H, van Ginneken B, Summers R M. Guest Editorial. Deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 2016; 35(5): 1153–9.
  • Kim D H, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol 2018; 73(5): 439–45.
  • Kitamura G, Chung C Y, Moore B E. Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation. J Digit Imaging 2019; 32(4): 672–7.
  • Mallick A, Parker M J. Basal fractures of the femoral neck: intra- or extra-capsular. Injury 2004; 35(10): 989–93.
  • Olczak J, Fahlberg N, Maki A, Razavian A S, Jilert A, Stark A, Sköldenberg O, Gordon M. Artificial intelligence for analyzing orthopedic trauma radiographs: deep learning algorithms—are they on par with humans for diagnosing fractures? Acta Orthop 2017; 88(6): 581–6.
  • Parker M J. Missed hip fractures. Arch Emerg Med 1992; 9(1): 23–7.
  • Plaats G J van der. Medical X-ray technique. Macmillan International Higher Education; June 18, 1969.
  • Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol 2019; 48(2): 239–44.
  • Yahalomi E, Chernofsky M, Werman M. Detection of distal radius fractures trained by a small set of X-Ray images and Faster R-CNN. Adv Intell Syst Comput 2019; 997:971–81.