315
Views
0
CrossRef citations to date
0
Altmetric
Articles

Superlattice-based quantum devices: from theory to practical applications

Pages 240-249 | Received 18 Feb 2014, Accepted 23 Feb 2014, Published online: 23 Apr 2014

References

  • Tsu R, Chang LL, Sai-Halasz GA, Esaki L. Effects of quantum states on the photocurrent in a “superlattice”. Phys. Rev. Lett. 1975;34:1509–1512.10.1103/PhysRevLett.34.1509
  • Sai-Halasz GA, Tsu R, Esaki L. A new semiconductor superlattice. Appl. Phys. Lett. 1977;30:651–653.10.1063/1.89273
  • Smith DL, Mailhiot C. Proposal for strained type II superlattice infrared detectors. J. Appl. Phys. 1987;62:2545–4548.10.1063/1.339468
  • Johnson JL, Samoska LA, Gossard AC, Merz JL, Jack MD, Chapman GR, Baumgratz BA, Kosai K, Johnson SM. Electrical and optical properties of infrared photodiodes using the InAs/Ga1−x In x Sb superlattice in heterojunctions with GaSb. J. Appl. Phys. 1996;80:1116–1127.10.1063/1.362849
  • Mohseni H, Michel E. Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range. Appl. Phys. Lett. 1997;71:1403–1405.10.1063/1.119906
  • Fuchs F, Weimer U, Pletschen W, Schmitz J, Ahlswede E, Walther M, Wagner J, Koidl P. High performance InAs/Ga1-xInxSb superlattice infrared photodiodes. Appl. Phys. Lett. 1997;71:3251–3253.10.1063/1.120551
  • Cabanski WA, Eberhardt K, Rode W, Wendler JC, Ziegler J, Fleissner J, Fuchs F, Rehm RH, Schmitz J, Schneider H, Walther M. In: 3rd gen focal plane array IR detection modules and applications. Proceedings SPIE, presented at the Infrared Technology and Applications XXX. Vol. 5406, Orlando (FL): Proc. SPIE, 2004; p. 184–192.
  • Nguyen B-M, Hoffman D, Delaunay P-Y, Razeghi M. Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier. Appl. Phys. Lett. 2007;91:163511-1–163511-3.10.1063/1.2800808
  • Ting DZY, Hill CJ, Soibel A, Keo SA, Mumolo JM, Nguyen J, Gunapala SD. A high-performance long wavelength superlattice complementary barrier infrared detector. Appl. Phys. Lett. 2009;95:023508.10.1063/1.3177333
  • Maimon S, Wicks GW. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 2006;89:151109.10.1063/1.2360235
  • Delaunay P-Y, Nguyen BM, Hofman D, Razeghi M. Substrate removal for high quantum efficiency back side illuminated type-II InAs/GaSb photodetectors. Appl. Phys. Lett. 2007;91:231106.10.1063/1.2821834
  • Nguyen B-M, Hoffman D, Huang EK, Delaunay P-Y, Razeghi M. Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K. Appl. Phys. Lett. 2008;93:123502.10.1063/1.2978330
  • Pour SA, Huang EK, Chen G, Haddadi A, Nguyen B-M, Razeghi M. High operating temperature midwave infrared photodiodes and focal plane arrays based on type-II InAs/GaSb superlattices. Appl. Phys. Lett. 2011;98:143501.10.1063/1.3573867
  • Hoang AM, Chen G, Haddadi A, Pour SA, Razeghi M. Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices. Appl. Phys. Lett. 2012;100:211101.10.1063/1.4720094
  • Wei Y, Gin A, Razeghi M, Brown GJ. Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 μm. Appl. Phys. Lett. 2002;81:3675.10.1063/1.1520699
  • Hoang AM, Chen G, Haddadi A, Razeghi M. Demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices. Appl. Phys. Lett. 2013 January 7;102:011108-1–011108-4.
  • Delaunay P-Y, Nguyen B-M, Hoffman D, Hood A, Huang EK, Razeghi M, Tidrow MZ. High quantum efficiency two color type-II InAs/GaSb n-i-p-p-i-n photodiodes. Appl. Phys. Letters. 2008;92:111112.10.1063/1.2898528
  • Khoshakhlagh A, Rodriguez JB, Plis E, Bishop GD, Sharma YD, Kim HS, Dawson LR, Krishna S. Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer superlattice detectors. Appl. Phys. Lett. 2007;91:263504.10.1063/1.2824819
  • Razeghi M, Delaunay PY, Nguyen BM, Hood A, Hoffman D, McClintock R, Wei Y, Michel E, Nathan V, Tidrow M. First Demonstration of ~ 10 microns FPAs in InAs/GaSb SLS. IEEE LEOS Newsletter. 2006;20:43–46.
  • Delaunay PY, Nguyen BM, Hoffman D, Huang EK, Razeghi M. Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs-GaSb superlattices. IEEE J. Quant. Elec. 2009;45:462–467.
  • Manurkar P, Darvish SR, Nguyen BM, Razeghi M, Hubbs J. High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices. Appl. Phys. Lett. 2010;97:193505.
  • Huang EK, Hoang MA, Chen G, Darvish SR, Haddadi A, Razeghi M. Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices. Opt. Lett. 2012;37:4744–4746.10.1364/OL.37.004744
  • Huang EK, Haddadi A, Chen G, Hoang AM, Razeghi M. Active and passive infrared imager based on short-wave and mid-wave type-II superlattice dual-band detectors. Opt. Lett. 2013;38:22–24.10.1364/OL.38.000022
  • Huang EK, Haddadi A, Chen G, Nguyen BM, Hoang MA, McClintock R, Stegall M, Razeghi M. Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance. Opt. Lett. 2011;36:2560–2562.10.1364/OL.36.002560
  • Huang EK, Razeghi M. World's first demonstration of type-II superlattice dual band 640 x 512 LWIR focal plane array. Proc. SPIE. 2012;8268:82680Z-1–82680Z-8.10.1117/12.913662
  • Razeghi M, Haddadi A, Hoang AM, Huang EK, Chen G, Bogdanov S, Darvish SR, Callewaert F, McClintock R. Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices. Infrared Phys. Technol. 2013;59:41–52.
  • Razeghi M. High-performance InP-based mid-IR quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 2009;15:941–951.10.1109/JSTQE.2008.2006764
  • Bai Y, Bandyopadhyay N, Tsao S, Slivken S, Razeghi M. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl. Phys. Lett. 2011;98:181102.10.1063/1.3586773
  • Bai Y, Slivken S, Kuboya S, Darvish SR, Razeghi M. Quantum cascade lasers that emit more light than heat. Nat. Photonics. 2010;4:99–102.10.1038/nphoton.2009.263
  • Lu QY, Bai Y, Bandyopadhyay N, Slivken S, Razeghi M. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. 2011;98:181106.10.1063/1.3588412
  • Goekden B, Bai Y, Bandyopadhyay N, Slivken S, Razeghi M. Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ∼4.36 μm. Appl. Phys. Lett. 2010;97:131112.10.1063/1.3496043
  • Bai Y, Tsao S, Bandyopadhyay N, Slivken S, Lu QY, Caffey D, Pushkarsky M, Day T, Razeghi M. High power, continuous wave, quantum cascade ring laser. Appl. Phys. Lett. 2011;99:261104.10.1063/1.3672049
  • Razeghi M, Gökden B, Tsao S, Haddadi A, Bandyopadhyay N, Slivken S. Widely tunable, single-mode, high-power quantum cascade lasers. Proc. of SPIE. 2011;8069:806905-1–806905-6.10.1117/12.887575
  • Bandyopadhyay N, Bai Y, Gokden B, Myzaferi A, Tsao S, Slivken S, Razeghi M. Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76 μm. Appl. Phys. Lett. 2010;97:131117.10.1063/1.3496489
  • Bandyopadhyay N, Slivken S, Bai Y, Razeghi M. High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers. Appl. Phys. Lett. 2012;100:212104.10.1063/1.4719110
  • Bandyopadhyay N, Bai Y, Tsao S, Nida S, Slivken S, Razeghi M. Room temperature continuous wave operation of λ ∼ 3–3.2 μm quantum cascade lasers. Appl. Phys. Lett. 2012;101:241110.10.1063/1.4769038
  • Lu QY, Bandyopadhyay N, Slivken S, Bai Y, Razeghi M. Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation. Appl. Phys. Lett. 2012;101:251121.10.1063/1.4773189
  • Lu QY, Bandyopadhyay N, Slivken S, Bai Y, Razeghi M. High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation. Opt. Express. 2013;21:968–973.10.1364/OE.21.000968
  • Walker D, Zhang X, Saxler A, Kung P, Xu J, Razeghi M. AlxGa1−xN (0≤ x≤1) ultraviolet photodetectors grown on sapphire by metal-organic chemical-vapor deposition. Appl. Phys. Lett. 1997;70:949–951.10.1063/1.118450
  • Monroy E, Hamilton M, Walker D, Kung P, Sánchez FJ, Razeghi M. High-quality visible-blind AlGaN p-i-n photodiodes. Appl. Phys. Lett. 1999;74:1171–1173.10.1063/1.123960
  • McClintock R, Yasan A, Mayes K, Shiell D, Darvish SR, Kung P, Razeghi M. High quantum efficiency AlGaN solar-blind p-i-n photodiodes. Appl. Phys. Lett. 2004;84:1248–1250.10.1063/1.1650550
  • McClintock R, Mayes K, Yasan A, Shiell D, Kung P, Razeghi M. 320×256 solar-blind focal plane arrays based on AlxGa1−xN. Appl. Phys. Lett. 2005;86:011117.10.1063/1.1846936
  • Cicek E, Vashaei Z, Huang EK, McClintock R, Razeghi M. AlGaN-based deep-ultraviolet 320 x 256 focal plane array. Opt. Lett. 2012;37:896–898.10.1364/OL.37.000896
  • McClintock R, Pau JL, Minder K, Bayram C, Kung P, Razeghi M. Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes. Appl. Phys. Lett. 2007;90:141112.10.1063/1.2720712
  • Yasan A, McClintock R, Mayes K, Darvish SR, Kung P, Razeghi M. Top-emission ultraviolet light-emitting diodes with peak emission at 280 nm. Appl. Phys. Lett. 2002;81:801–803.10.1063/1.1497709
  • Yasan A, McClintock R, Mayes K, Shiell D, Gautero L, Darvish SR, Kung P, Razeghi M. 4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes. Appl. Phys. Lett. 2003;83:4701–4703.10.1063/1.1633019
  • Zhang Y, Gautier S, Cho C, Cicek E, Vashaei Z, McClintock R, Bayram C, Bai Y, Razeghi M. Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111). Appl. Phys. Lett. 2013;102:011106.10.1063/1.4773565
  • Sun G, Soref RA. Design and simulation of a GaN/AlGaN quantum cascade laser for terahertz emission. Microelectron. J. 2005;36:450–452.10.1016/j.mejo.2005.02.044
  • Bayram C, Péré-laperne N, McClintock R, Fain B, Razeghi M. Pulsed metal-organic chemical vapor deposition of high-quality AlN/GaN superlattices for near-infrared intersubband transitions. Appl. Phys. Lett. 2009;94:121902.10.1063/1.3104857
  • Péré-Laperne N, Bayram C, Nguyen-Thê L, McClintock R, Razeghi M. Tunability of intersubband absorption from 4.5 to 5.3 μm in a GaN/Al0.2Ga0.8N superlattices grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2009;95:131109.10.1063/1.3242027
  • Bayram C, Vashaei Z, Razeghi M. Reliability in room-temperature negative differential resistance characteristics of low-aluminum content AlGaN/GaN double-barrier resonant tunneling diodes. Appl. Phys. Lett. 2010;97:181109.10.1063/1.3515418

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.