51
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

4-channels coherent perfect absorption (CPA)-type demultiplexer using plasmonic nano spheres

&
Pages 690-699 | Received 28 Mar 2016, Accepted 09 Jan 2017, Published online: 24 Mar 2017

References

  • Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424(6950):824–830.10.1038/nature01937
  • Genet C, Ebbesen TW. Light in tiny holes. Nat Photonics. 2007;445(7123):39–46.
  • Yinghui G, Lianshan Y, Wei P, et al. A plasmonic splitter based on slot cavity. Opt Express. 2011;19(15):13831–13838.
  • Tai Chao-Yi, Chang SH, Chiu TC. Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays. IEEE Photonics Technol Lett. 2007;19(19):1448–1450.
  • Zhu JH, Huang XG, Mei X. Improved models for plasmonic waveguide splitters and demultiplexers at the telecommunication wavelengths. IEEE Trans Nanotechnol. 2011;10(5):1166–1171.
  • Xiao S, Liu L. Resonator narrow band stop filters in a plasmon-polariton metal. Opt Express. 2006;14:2932–2937.
  • Hosseini Ar, Massoud Y. Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett. 2007;90(18):181102.10.1063/1.2734380
  • Noual A, Akjouj A, Pennec Y, et al. Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New J Phys. 2009;11(10):103020.10.1088/1367-2630/11/10/103020
  • Hu F, Zhou Z. Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities. J Opt Soc Am B. 2011;28(10):2518–2523.10.1364/JOSAB.28.002518
  • Lu H, XM Liu, LR Wang, et al. Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides. Appl Phys B. 2011;103(4):877–881.10.1007/s00340-011-4525-0
  • Kunhua W, Lianshan Y, Wei P, et al. Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. J Opt. 2012;14(7):075001.
  • Min C, Veronis G. Absorption switches in metal–dielectric–metal plasmonic waveguides. Opt Express. 2009;17(13):10757–10766.10.1364/OE.17.010757
  • Koushkaki HR, Akhlaghi M. Investigating the optical nand gate using plasmonic nano-spheres. Opt Quantum Electron. 2015;47(11):3637–3645.10.1007/s11082-015-0236-9
  • Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev. 2006;35:209–217.10.1039/B514191E
  • Zeng S, Yu X, Law W-C, et al. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sens Actuators B. 2013;176:1128. DOI:10.1016/j.snb.2012.09.073.
  • Akhlaghi M, Emami F, Nozhat N. Binary TLBO algorithm assisted for designing plasmonic nano bi-pyramids-based absorption coefficient. J Mod Opt. 2014;61(13):1092–1096.10.1080/09500340.2014.920537
  • Akhlaghi M, Nozhat N, Emami F. Investigating the optical switch using dimer plasmonic nano-rods. IEEE Trans Nanotechnol. 2014;13(6):1172–1175.
  • Taflove A, Brodwin ME. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans Microwave Theory Tech. 1975;23(8):623–630.10.1109/TMTT.1975.1128640
  • Weiland T. A discretization method for the solution of Maxwell’s equations for six-component fields. Arch Elektron Übertragungstech. 1977;31:116–120.
  • Zhang Q, Huang XG, Lin XS, et al. A subwavelength coupler-type MIM optical filter. Opt Express. 2009;17(9):7549–7554.10.1364/OE.17.007549
  • Akhlaghi M, Emami F, Nozhat N. TLBO algorithm assisted for designing plasmonic nano particles based absorption coefficient. J Optoelectron Adv Mater – Rapid Commun. 8(9–10):1–4.
  • Weiland T. “Finite integration method and discrete electromagnetism”. In Computational Electromagnetics. Berlin Heidelberg: Springer; 2003. p. 183–198.
  • Harrington RF. Field computation by moment methods. New York (NY): IEEE Press; 1993.10.1109/9780470544631
  • Kern AM, Martin OJF. Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. J Opt Soc Am A. 2009;26(4):732–740.10.1364/JOSAA.26.000732
  • Gallinet B, Kern AM, Martin OJF. Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach. J Opt Soc Am A. 2010;27(10):2261–2271.10.1364/JOSAA.27.002261
  • Taboada JM, Rivero J, Obelleiro F, et al. Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. J Opt Soc Am A. 2011;28(7):1341–1348.10.1364/JOSAA.28.001341
  • Taflove A, Hagness SC. Computational electrodynamics: the finite difference time domain method. 2nd ed. London (MA): Artech House, ANDwood; 2000.
  • Jin JM. The finite element method in electromagnetics. 2nd ed. New York (NY): John Wiley & Sons; 2002.
  • Draine BT, Flatau PJ. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A. 1994;11:1491–1499.10.1364/JOSAA.11.001491
  • Forestiere C, Miano G, Boriskina SV, et al. The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays. Opt Express. 2009;17:9648–9661.10.1364/OE.17.009648
  • Akhlaghi M, Emami F, Nozhat N. Location effect on gold nano bi-domes based absorption coefficient. Opt Quantum Electron. 2015;47(7):1713–1719.10.1007/s11082-014-0028-7
  • Akhlaghi M, Shahmirzaee H, Enjavi MH. Binary optimization of metallic nano-tube-based absorption coefficient. J Comput Electron. 2015;14(2):486–491.10.1007/s10825-015-0676-2
  • Koushkaki HR, Akhlaghi M. Investigating the optical nand gate using plasmonic nano-spheres. Opt Quantum Electron. 2015;47(11):3637–3645.10.1007/s11082-015-0236-9
  • Akhlaghi M, Keshavarz R, Emami F. Binary control of plasmonic nano rods to design an optical switch. Opt Quantum Electron. 2015;47(8):3071–3080.10.1007/s11082-015-0195-1
  • Koushkaki HR, Rahmanian H, Akhlaghi M, et al. Binary optimization of plasmonic nano bi-domes to design an optical clocking. Opt Quantum Electron. 2015;47(11):3589–3597.10.1007/s11082-015-0232-0
  • Akhlaghi M, Keshavarzi R, Emami F. Binary-control of gold nano-tubes to design an all-optical switch. Opt Quantum Electron. 2015;47(8):2605–2614.10.1007/s11082-015-0149-7
  • Emami F, Akhlaghi M, Nozhat N. Binary optimization of gold nano-rods for designing an optical modulator. J Comput Electron. 2015;14(2):574–581.10.1007/s10825-015-0689-x
  • Emami F, Akhlaghi M. Gain ripple decrement of S-band Raman amplifier. IEEE Photonics Technol Lett. 2012;24:1349–1352.10.1109/LPT.2012.2203591
  • Akhlaghi M, Emami F. Fuzzy adaptive modified PSO-algorithm assisted to design of photonic crystal fiber Raman amplifier. J Opt Soc Korea. 2013;17:237–241.10.3807/JOSK.2013.17.3.237
  • Akhlaghi M, Emami F, MS Sha Sadeghi, et al. Simulation and optimization of nonperiodic plasmonic nano-particles. J Opt Soc Korea. 2014;18(1):82–88.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.