191
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

New exact solutions for the seventh-order time fractional Sawada–Kotera–Ito equation via various methods

Pages 441-457 | Received 13 Jul 2017, Accepted 18 Jul 2018, Published online: 09 Oct 2018

References

  • Samko S, Kilbas AA, Marichev O. Fractional integrals and derivatives: theory and applications. Yverdon: Gordon and Breach Science Publishers; 1993.
  • Podlubny I. Fractional differential equations. San Diego (CA): Academic Press; 1999.
  • Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Amsterdam: Elsevier; 2006.
  • Zhang S, Zhang H-Q. Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys Lett A. 2011;375:1069–1073. doi: 10.1016/j.physleta.2011.01.029
  • Sahoo S, Ray SS. Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV–Zakharov–Kuznetsov equations. Comput Math Appl. 2015;70:158–166. doi: 10.1016/j.camwa.2015.05.002
  • Bekir A, Guner O, Bhrawy AH, et al. Solving nonlinear fractional differential equations using exp-function and (G′/G)-expansion methods. Rom J Phys. 2015;60(3–4):360–378.
  • Abdel-Salam EA, Hassan GF. Multiwave solutions of fractional 4th and 5th order Burgers equations. Turk J Phys. 2015;39:227–241. doi: 10.3906/fiz-1501-3
  • Guner O, Cevikel AC. A procedure to construct exact solutions of nonlinear fractional differential equations. Sci World J. 2014;2014: 489495. doi: 10.1155/2014/489495
  • Ganji DD, Abdollahzadeh M. Exact traveling solutions of some nonlinear evolution equation by (G'/G)-expansion method. J Math Phys. 2009;50:013519. doi: 10.1063/1.3052847
  • Kimiaeifar A, Saidi AR, Sohouli AR, et al. Analysis of modified Van der Pol's oscillator using He's parameter-expanding methods. Curr Appl Phys. 2010;10(1):279–283. doi: 10.1016/j.cap.2009.06.006
  • Bekir A, Guner O. Exact solutions of nonlinear fractional differential equations by (G′/G)-expansion method. Chin Phys B. 2013;22(11):110202. doi: 10.1088/1674-1056/22/11/110202
  • Zayed EME, Arnous AH. Exact traveling wave solutions for coupled nonlinear fractional pdes using the (G′/G)-expansion method. Eur J Acad Essays. 2014;1(2):6–16.
  • Guner O, Bekir A, Cevikel AC. A variety of exact solutions for the time fractional Cahn-Allen equation. Eur Phys J Plus. 2015;130:146. doi: 10.1140/epjp/i2015-15146-9
  • Ganji SS, Ganji DD, Ganji ZZ, et al. Periodic solution for strongly nonlinear vibration systems by He's energy balance method. Acta Appl Math. 2009;106:79. doi: 10.1007/s10440-008-9283-6
  • Bekir A, Guner O, Unsal O. The first integral method for exact solutions of nonlinear fractional differential equations. J Comput Nonlinear Dynam. 2015;10(021020-5):463–470.
  • Zayed EME, Amer YA. The first integral method and its application for finding the exact solutions of nonlinear fractional partial differential equautions (PDES) in the mathematical physics. Int J Phys Sci. 2014;9(8):174–183. doi: 10.5897/IJPS2014.4130
  • Liu W, Chen K. The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations. Pramana – J Phys. 2013;81:3. doi: 10.1007/s12043-013-0583-7
  • Guner O, Eser D. Exact solutions of the space time fractional symmetric regularized long wave equation using different methods. Adv Math Phys. 2014;2014:456804. doi: 10.1155/2014/456804
  • Bahrami BS, Abdollahzade H, Berijani IM, et al. Exact travelling solutions for some nonlinear physical models by ( G'/ G)-expansion method. Pramana – J Phys. 2011;77(2):263–275. doi: 10.1007/s12043-011-0100-9
  • Kurulay M, Bayram M. Approximate analytical solution for the fractional modified KdV by differential transform method. Commun Nonlinear Sci Numer Simul. 2010;15:1777–1782. doi: 10.1016/j.cnsns.2009.07.014
  • Golbabai A, Sayevand K. The homotopy perturbation method for multi-order time fractional differential equations. Nonlinear Sci Lett A. 2010;1:147–154.
  • He JH. New interpretation of homotopy perturbation method. Int J Modern Phys B. 2006;20:1–7. doi: 10.1142/S0217979206033127
  • Imani AA, Ganji DD, Rokni HB, et al. Approximate traveling wave solution for shallow water wave equation. Appl Math Model. 2012;36:1550–1557. doi: 10.1016/j.apm.2011.09.030
  • Ganji DD, Rafei M. Solitary wave solutions for a generalized Hirota–Satsuma coupled KdV equation by homotopy perturbation method. Phys Lett A. 2006;356(2):131–137. doi: 10.1016/j.physleta.2006.03.039
  • Daftardar-Gejji V, Bhalekar S. Solving multi-term linear and nonlinear diffusion wave equations of fractional order by Adomian decomposit ion method. Appl Math Comput. 2008;202:113–120.
  • Gerdroodbary MB, Ganji DD, Amini Y. Numerical study of shock wave interaction on transverse jets through multiport injector arrays in supersonic crossflow. Acta Astronaut. 2015;115:422–433. doi: 10.1016/j.actaastro.2015.06.002
  • Dahmani Z, Mesmoudi MM, Bebbiouchi R. The foam drainage equation with time- and space-fractional derivatives, solved by Adomian method. Electron J Qual Theory Differ Equ. 2008;30:1–10. doi: 10.14232/ejqtde.2008.1.30
  • Ganji HF, Jouya M, Mirhosseini-Amiri SA, et al. Traveling wave solution by differential transformation method and reduced differential transformation method. Alexandria Eng J. 2016;55:2985–2994. doi: 10.1016/j.aej.2016.04.012
  • Daftardar-Gejji V, Jafari H. Solving a multi-order fractional differential equation using Adomian decomposition. Appl Math Comput. 2007;189:541–548.
  • Sweilam NH, Khader MM, Al-Bar RF. Numerical studies for a multi-order fractional differential equation. Phys Lett A. 2007;371:26–33. doi: 10.1016/j.physleta.2007.06.016
  • Ganji DD, Rokni HB, Sfahani MG, et al. Approximate traveling wave solutions for coupled Whitham–Broer–Kaup shallow water. Adv Eng Softw. 2010;41(7–8):956–961. doi: 10.1016/j.advengsoft.2010.05.008
  • Golbabai A, Sayevand K. Fractional calculus. a new approach to the analysis of generalized-fourth-order diffusion wave equations. Comput Math Appl. 2011;61(8):2227–2231. doi: 10.1016/j.camwa.2010.09.022
  • Gerdroodbary MB, Takami MR, Heidari HR, et al. Comparison of the single/multi transverse jets under the influence of shock wave in supersonic crossflow. Acta Astronaut. 2016;123:283–291. doi: 10.1016/j.actaastro.2016.03.031
  • Caputo M. Linear models of dissipation whose Q is almost frequency independent II. Geophys J Royal Astronom Soc. 1967;13:529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x
  • Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives: theory and applications. Switzerland: Gordon and Breach Science Publishers; 1993.
  • Sun HG, Chen W. Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence. Sci China Ser E. 2009;52:680–683. doi: 10.1007/s11431-009-0050-3
  • Chen W, Sun HG. Multiscale statistical model of fully-developed turbulence particle accelerations. Modern Phys Lett B. 2009;23:449–452. doi: 10.1142/S021798490901862X
  • Jumarie G. Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput Math Appl. 2006;51:1367–1376. doi: 10.1016/j.camwa.2006.02.001
  • Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouvillie derivative for nondifferentiable functions. Appl Maths Lett. 2009;22:378–385. doi: 10.1016/j.aml.2008.06.003
  • He JH, Elegan SK, Li ZB. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys Lett A. 2012;376:257–259. doi: 10.1016/j.physleta.2011.11.030
  • Aksoy E, Kaplan M, Bekir A. Exponential rational functionmethod for space–time fractional differential equations. Waves Random Complex Media. 2016;26(2):142–151. doi: 10.1080/17455030.2015.1125037
  • Yasar E, Yıldırım Y, Khalique CM. Lie symmetry analysis. Conservation laws and exact solutions of the seventh-order time fractional Sawada–Kotera–Ito equation. Results Phys. 2016;6:322–328. doi: 10.1016/j.rinp.2016.06.003
  • Wazwaz AM. The Hirota's direct method and the tanh–coth method for multiple-soliton solutions of the Sawada–Kotera–Ito seventh-order equation. Appl Math Comput. 2008;199:133–138.
  • El-Sayed SM, Kaya D. An application of the ADM to seven-order Sawada–Kotara equations. Appl Math Comput. 2004;157:93–101.
  • Ito M. An extension of nonlinear evolution equations of the K–dV (mK–dV) type to higher order. J Phys Soc Jpn. 1980;49:771–778. doi: 10.1143/JPSJ.49.771
  • Shen YJ, Gao YT, Yu X, et al. Bell-polynomial approach applied to the seventh-order Sawada–Kotera–Ito equation. Appl Math Comput. 2014;227:502–508.
  • He JH, Abdou MA. New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos Solitons Fractals. 2007;34(5):1421–1429. doi: 10.1016/j.chaos.2006.05.072
  • He JH, Wu XH. Exp-function method for nonlinear wave equations. Chaos Solitons Fractals. 2006;30:700–708. doi: 10.1016/j.chaos.2006.03.020
  • Bekir A. Application of the (G′/G)-expansion method for nonlinear evolution equations. Phys Lett A. 2008;372:3400–3406. doi: 10.1016/j.physleta.2008.01.057
  • Biswas A, Triki H, Labidi M. Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity. Phys Wave Phenom. 2011;19(1):24–29. doi: 10.3103/S1541308X11010067
  • Bekir A, Guner O. Bright and dark soliton solutions of the (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation and generalized Benjamin equation. Pramana – J Phys. 2013;81(2):203–214. doi: 10.1007/s12043-013-0568-6
  • Triki H, Wazwaz AM. Bright and dark soliton solutions for a K(m,n) equation with t-dependent coefficients. Phys Lett A. 2009;373:2162–2165. doi: 10.1016/j.physleta.2009.04.029
  • Ebadi G, Biswas A. The (G′/G) method and 1-soliton solution of the Davey–Stewartson equation. Math Comput Model. 2011;53(5–6):694–698. doi: 10.1016/j.mcm.2010.10.005
  • Guner O, Bekir A. Bright and dark soliton solutions for some nonlinear fractional differential equations. Chin Phys B. 2016;25(3):030203. doi: 10.1088/1674-1056/25/3/030203
  • Guner O, Bekir A, Korkmaz A. Tanh-type and sech-type solitons for some space-time fractional PDE models. Eur Phys J Plus. 2017;132:92. doi: 10.1140/epjp/i2017-11370-7
  • Guner O. Singular and non-topological soliton solutions for nonlinear fractional differential equations. Chin Phys B. 2015;24(10):100201. doi: 10.1088/1674-1056/24/10/100201

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.