243
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Stable soliton solutions to the shallow water waves and ion-acoustic waves in a plasma

, & ORCID Icon
Pages 1672-1693 | Received 25 Jun 2020, Accepted 29 Sep 2020, Published online: 12 Oct 2020

References

  • Assas LMB. New exact solutions for the Kawahara equation using Exp-function method. J Comput Appl Math. 2009;233:97–102.
  • Gu C. Soliton theory and its applications. Shanghai: Springer Science & Business Media; 2013.
  • Kayum MA, Akbar MA, Osman MS. Competent closed form soliton solutions to the nonlinear transmission and the low-pass electrical transmission lines. Eur Phys J Plus. 2020;135(7):1–20.
  • Wang M, Tian B, Sun Y, et al. Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3 + 1)-dimensional nonlinear wave equation for a liquid with gas bubbles. Comput Math Appl. 2020;79(3):576–587.
  • Yin HM, Tian B, Zhao XC. Chaotic breathers and breather fission/fusion for a vector nonlinear Schrödinger equation in a birefringent optical fiber or wavelength division multiplexed system. Appl Math Comput. 2020;368:124768.
  • Zhang CR, Tian B, Qu QX, et al. Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber. Zeitsch Angew Math Phys. 2020;71(1):1–19.
  • Kayum MA, Ara S, Barman HK, et al. Soliton solutions to voltage analysis in nonlinear electrical transmission lines and electric signals in telegraph lines. Res Phys. 2020;18:103269.
  • Yamgoue SB, Deffo GR, Pelap FB. A new rational sine-Gordon expansion method and its application to nonlinear wave equations arising in mathematical physics. Eur Phys J Plus. 2019;134:380.
  • Pandir Y, Yildirim A. Analytical approach for the fractional differential equation by using the extended tanh method. Waves Random Compl Media. 2017;28(3):1745–5049.
  • Tian Y. Quasi hyperbolic function expansion method and tanh-function method for solving vibrating string equation and elastic rod equation. J Low Freq Noise Vibr Active Contr. 2019;38(3-4):1455–1465.
  • Wazwaz AM. A sine-cosine method for handling nonlinear wave equations. Math Comput Model. 2004;40:499–508.
  • El-Horbati MM, Ahmed FM. The solitary travelling wave solutions of some nonlinear partial differential equations using the modified extended tanh function method with Riccati equation. Asian Res J Math. 2018;8(3):1–13.
  • Kumar D, Kaplan M, Haque M, et al. A variety of novel exact solutions for different models with conformable derivative in shallow water. Front Phys. 2020;8:177.
  • Khan K, Akbar MA. Travelling wave solutions of the (2 + 1)-dimensional Zoomeron equation and the Burgers equation via the MSE method and the Exp-function method. Ain Shams Eng J. 2014;5:247–256.
  • Abdou MA. The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos. Solit Fractals. 2007;31:95–104.
  • Xue-Qin Z, Hong-Yan Z. An improved F-expansion method and its application to coupled Drinfel’d-Sokolov-Wilson equation. Commun Theor Phys. 2008;50(2):309.
  • Yue C, Elmoasry A, Khater MMA, et al. On complex wave structures related to the nonlinear long–short wave interaction system: analytical and numerical techniques. AIP Adv. 2020;10(4):045212.
  • Osman MS, Lu D, Khater MMA, et al. Complex wave structures for abundant solutions related to the complex Ginzburg–Landau model. Optik (Stuttg). 2019;192:162927.
  • Osman MS, Rezazadeh H, Eslami M, et al. Analytical study of solitons to Benjamin-Bona-Mahony-Peregrine equation with power law nonlinearity by using three methods. Univ Polit Buchar Sci Bull Series A Appl Math Phys. 2018;80(4):267–278.
  • Srivastava HM, Baleanu D, Machado JAT, et al. Traveling wave solutions to nonlinear directional couplers by modified Kudryashov method. Phys Scr. 2020;95(7):075217.
  • Fan E, Zhang H. A note on the homogeneous balance method. Phys Lett A. 1998;246:403–406.
  • Xu HN, Ruan WY, Zhang Y, et al. Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior. Appl Math Lett. 2020;99:105976.
  • Xia JW, Zhao YW, Lü X. Predictability, fast calculation and simulation for the interaction solutions to the cylindrical Kadomtsev-Petviashvili equation. Commun Nonlinear Sci Numer Simul. 2020;88:105260.
  • Chen SJ, Yin YH, Ma WX, et al. Abundant exact solutions and interaction phenomena of the (2 + 1)-dimensional YTSF equation. Anal Math Phys. 2019;9(4):2329–2344.
  • Hua YF, Guo BL, Ma WX, et al. Interaction behavior associated with a generalized (2 + 1)-dimensional Hirota bilinear equation for nonlinear waves. Appl Math Model. 2019;74:184–198.
  • Yin YH, Ma WX, Liu JG, et al. Diversity of exact solutions to a (3 + 1)-dimensional nonlinear evolution equation and its reduction. Comput Math Appl. 2018;76(6):1275–1283.
  • Lü X, Ma WX. Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 2016;85(2):1217–1222.
  • Gao LN, Zhao XY, Zi YY, et al. Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput Math Appl. 2016;72(5):1225–1229.
  • Liu JG, Zhu WH, Osman MS, et al. An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo–Miwa model. Eur Phys J Plus. 2020;135(6):412.
  • Chen SJ, Ma WX, Lü X. Bäcklund transformation, exact solutions and interaction behaviour of the (3 + 1)-dimensional Hirota-Satsuma-Ito-like equation. Commun Nonlinear Sci Numer Simul. 2020;83:105135.
  • Gao LN, Zi YY, Yin YH, et al. Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 2017;89(3):2233–2240.
  • Lü X, Lin F, Qi F. Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, bäcklund transformation and soliton solutions. Appl Math Model. 2015;39(12):3221–3226.
  • Chen HH, Lee YC, Liu CS. Integrability of nonlinear Hamiltonian Systems by inverse scattering method. Phys Scr. 1979;20:3–4.
  • Biswas A, Ekici M, Sonmezoglu A, et al., optical solitons and conservation law in bi-refringent fibers with Kundu-Eckhaus equation by extended trial function method. Optik (Stuttg). 2019;179:471–478.
  • Abdel-Gawad HI, Osman MS. On the variational approach for analyzing the stability of solutions of evolution equations. Kyungpook Math J. 2013;53(4):661–680.
  • Yin-Long Z, Yin-Ping L, Zhi-Bin L. A connection between the G'/G-expansion method and the truncated Painleve expansion method and its application to the mKdV equation. Chin Phys B. 2010;19(3):030306.
  • Sassaman R, Heidari A, Biswas A. Topological and non-topological solitons of nonlinear Klein-Gordon equations by He’s semi inverse variational principle. J Franklin Inst. 2010;347:1148–1157.
  • Kumar VS, Rezazadeh H, Eslami M, et al. Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity. Int J Appl Comp Math. 2019;5(5):127.
  • Marinca V, Herisanu M, Bota C, et al. An optical homotopy asymptotic method applied to the steady flow the fourth-grade fluid past a porous plate. Appl Math Lett. 2009;22:245–251.
  • Momani S. Non-perturbative analytic solutions of the space and time-fractional Burgers equations. Chaos Solitons Fract. 2006;28:930–937.
  • Liu JG, Yang XJ, Feng YY. On integrability of the time fractional nonlinear heat conducyion equation. J Geom Phys. 2019;144:190–198.
  • He JH. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl Math Comput. 2004;151:287–292.
  • Biswas A, Yildirim A, Hayat T, et al. Soliton perturbation theory for the generalized Klein-Gordon equation with full nonlinearity. Proc Roman Acad. 2012;13:32–41.
  • Baleanu D, Osman MS, Zubair A, et al. Soliton solutions of a nonlinear fractional Sasa-Satsuma equation in Monomode optical fibers. Appl Math Inf Sci. 2020;14(3):365–374.
  • Wazwaz AM, Kaur L. Optical solitons and Peregrine solitons for nonlinear Schroedinger equation by variational iteration method. Optik (Stuttg). 2019;179:804–809.
  • Hossain AKMKS, Akbar MA. Travelling wave solutions of nonlinear evolution equation via the modified simple equation method. Int J Appl Math Theor Phys. 2017;3(2):20–25.
  • Liu JG, Osman MS, Zhu WH, et al. Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers. Appl Phys B. 2019;125(9):175.
  • Miah MM, Ali HMS, Akbar MA, et al. New Applications of the two variable (G'/G,1/G) expansion method for closed form travelling wave solutions of integro-differential equations. J Ocean Eng Sci. 2019;4:132–143.
  • Ali KK, Osman MS, Abdel-Aty M. New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method. Alex Eng J. 2020;59:1191–1196.
  • Du Z, Tian B, Chai HP, et al. Dark-bright semi-rational solitons and breathers for a higher-order coupled nonlinear Schrödinger system in an optical fiber. Appl Math Lett. 2020;102:106110.
  • Chen SS, Tian B, Sun Y, et al. Generalized Darboux transformations, rogue waves, and modulation instability for the coherently coupled nonlinear Schrödinger equations in nonlinear optics. Ann Phys. 2019;531(8):1900011.
  • Du XX, Tian B, Qu QX, et al. Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma. Chaos Solitons Fract. 2020;134:109709.
  • Hu CC, Tian B, Yin HM, et al. Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid. Comput Math Appl. 2019;78(1):166–177.
  • Gao XY, Guo YJ, Shan WR. Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto-and non-auto-Bäcklund transformations. Appl Math Lett. 2020;104:106170.
  • Gao XY, Guo YJ, Shan WR, et al. Magneto-optical/ferromagnetic-material computation: Bäcklund transformations, bilinear forms and N solitons for a generalized (3 + 1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system. Appl Math Lett. 2020: 106627. doi:https://doi.org/10.1016/j.aml.2020.106627.
  • Nasreen N, Seadawy AR, Lu D. Construction of soliton solutions for modified Kawahara equation arising in shallow water waves using novel techniques. Int J Mod Phys B. 2020;34(07):2050045.
  • Alquran M, Jaradat I, Ali M, et al. The dynamics of new dual-mode Kawahara equation: interaction of dual-waves solutions and graphical analysis. Phys Scr. 2020;95(4):045216.
  • Kawahara T. Oscillatory solitary waves in dispersive media. J Phys Soc Jpn. 1972;33(1):260–264.
  • Fu Z, Liu S, Liu S, et al. The JEFE method and periodic solutions of two kinds of nonlinear wave equations. Commun Nonlinear Sci Numer Simul. 2003;8:67–75.
  • Wazwaz AM. Compacton solutions of the Kawahara-type nonlinear dispersive equation. Appl Math Comput. 2003;145:133–150.
  • Matinfar M, Hosseinzadeh H, Ghanbari M. Exact and numerical solution of Kawahara equation by the variational iteration method. Appl Math Sci. 2008;2(43):2119–2126.
  • Kashkari BS. Application of optimal homotopy asymptotic method for the approximate solution of Kawahara equation. Appl Math Sci. 2014;8(18):875–884.
  • Wazwaz AM. New solitary wave solutions to the modified Kawahara equation. Phys Lett A. 2007;360:588–592.
  • Mahmood BA, Yousif MA. A novel analytical solution for the modified Kawahara equation using the residual power series method. Nonlinear Dyn. 2017;89:1233–1238.
  • Yusufoglu E, Bekir A, Alp M. Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using sine-cosine method. Chaos Solit Fract. 2008;37:1193–1197.
  • Yusufoglu E, Bekir A. Symbolic computation and new families of exact travelling solutions for the Kawahara and modified Kawahara equations. Comput Math Appl. 2008;55:1113–1121.
  • Zhang D. Doubly periodic solutions of the modified Kawahara equation, Chaos Solit Fract. 2005;25:1155–1160.
  • Kurulay M. Approximate analytic solutions of the modified Kawahara equation with homotopy analysis method. Adv Differ Equ. 2012;178:1–6.
  • Polat N, Kaya D, Tutalar HI. A analytic and numerical solution to a modified Kawahara equation and a convergence analysis of the method. Appl Math Comput. 2006;179:466–472.
  • Ullah H, Nawaz R, Islam S, et al. The optimal homotopy asymptotic method with application to modified Kawahara equation. J Assoc Arab Univ Basic Appl Sci. 2015;18:82–88.
  • Jin L. Application of variational iteration method and homotopy perturbation method to the modified Kawahara equation. Math Comput Model. 2009;49:573–578.
  • Ganji DD, Nourollahi M, Rostamian M. A comparison of variational iteration method with Adomian’s decomposition method in some highly nonlinear equations. Int J Sci Technol. 2007;2(2):179–188.
  • Wazwaz AM. New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations. Appl Math Comput. 2006;182:1642–1650.
  • Haq S, Uddin M. RBFs approximation method for Kawahara equation. Eng Anal Bound Elem. 2011;35:575–580.
  • Wang Q. The optimal homotopy-analysis method for Kawahara equation. Nonlinear Anal Real World Appl. 2011;12:1555–1561.
  • Kaya D, Al-Khaled K. A numerical comparison of a Kawahara equation. Phys Lett A. 2007;363:433–439.
  • Ozis T, Aslan I. Application of the (G'/G)-expansion method to Kawahara type equations using symbolic computation. Appl Math Comput. 2010;216:2360–2365.
  • Ali KK, Wazwaz AM, Osman MS. Optical soliton solutions to the generalized non-autonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method. Optik (Stuttg). 2020;208:164132.
  • Baskonus HM, Bulut H, Sulaiman TA. New complex hyperbolic structures to the Lonngren-wave equation by using sine-Gordon expansion method. Appl Math Nonlinear Sci. 2019;4(1):129–138.
  • Baskonus HM. New acoustic wave behaviors to the Davey Stewartson equation with power-law nonlinearity arising in fluid dynamics. Nonlinear Dyn. 2016;86:177–183.
  • Kumara D, Hosseini K, Samadani F. The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik (Stuttg). 2017;149:439–446.
  • Yel G, Baskonus HM, Bulut H. Novel archetypes of new coupled Konno-Oono equation by using sine-Gordon expansion method. Opt Quantum Electron. 2017;49:285.
  • Inc M, Aliyu AI, Yusuf A, et al. Optical solitons to the resonance nonlinear Schrodinger equation by sine-Gordon equation method. Superlatt Microstruct. 2018;113:541–549.
  • Alquran M, Krishna EM. Applications of sine-Gordon expansion method for a reliable treatment of some nonlinear wave equations. Nonlinear Stud. 2016;23(4):639–649.
  • Rezazadeh H, Mirhosseini-Alizamini SM, Neirameh A, et al. Fractional sine-Gordon equation approach to the coupled Higgs system defined in time-fractional form. Iran J Sci Technol Trans A Sci. 2019;43(6):2965–2973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.