257
Views
42
CrossRef citations to date
0
Altmetric
Research Articles

Entropy optimization for Darcy–Forchheimer electro-magneto-hydrodynamic slip flow of ferronanofluid due to stretching/shrinking rotating disk

, , , ORCID Icon, & ORCID Icon
Pages 1062-1094 | Received 07 Mar 2021, Accepted 03 May 2021, Published online: 19 May 2021

References

  • Rosensweig RE. Ferrofluids: introduction. In: KHJ Buschow, RW Cahn, MC Flemings, B Ilschner, EJ Kramer, S Mahajan, editors. Encyclopedia of materials: science and technology. Oxford: 4 Elsevier; 2001. p. 3093–3102.
  • Hartshorne H, Backhouse CJ, Lee WE. Ferrofluid-based microchip pump and valve. Sensors Actuators B. 2004;99:592–600.
  • Amirat Y, Hamdache K. Strong solutions to the equations of a ferrofluid flow model. J Math Anal Appl. 2009;353(1):271–294.
  • Raj K, Moskowitz B, Casciari R. Advances in ferrofluid technology. J Magn Magn Mater. 1995;149(1–2):174–180.
  • Gerdroodbary MB, Sheikholeslami M, Mousavi SV, et al. The influence of non-uniform magnetic field on heat transfer intensification of ferrofluid inside a T-junction. Chem Eng Process. 2018;123:58–66.
  • Sheikholeslami M, Barzegar M, Gerdroodbary MB, et al. Heat transfer enhancement of ferrofluid inside an 90° elbow channel by non-uniform magnetic field. J Magn Magn Mater. 2018;460:302–311.
  • Siddiqui AA, Turkyilmazoglu M. A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids. Micromachines (Basel). 2019;10(6):373.
  • Siddiqui AA, Turkyilmazoglu M. Natural convection in the ferrofluid enclosed in a porous and permeable cavity. Int Comm Heat Mass Transf. 2020;113:104499.
  • Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD, 66; 1995. p. 99-105.
  • Ijaz Khan M, Alzahani F. Binary chemical reaction with activation energy in dissipative flow of non-Newtonian nanomaterial. J Theoretical Comp Chem. 2020;19(3):2040006.
  • Singh K, Pandey AK, Kumar M. Melting and chemical reaction effects in stagnation point flow of micropolar fluid over a stretchable porous medium in the presence of nonuniform heat source/sink. J Porous Media. 2020;23(8):767–781.
  • Upreti H, Pandey AK, Kumar M, et al. Ohmic heating and Non–uniform heat source/sink roles 3D darcy–Forchheimer flow of CNTs nanofluids over a stretching surface. Arabian J Sci Eng. 2020;45:7705–7717.
  • Upreti H, Pandey AK, Kumar M. Assessment of entropy generation and heat transfer in three dimensional hybrid nanofluid flow due to convective surface and base fluids. J Porous Media. 2021;24(3):35–50.
  • Singh K, Pandey AK, Kumar M. Entropy generation impact on flow of micropolar fluid via an inclined channel with non-uniform heat source and variable fluid properties. Int J Appl Comp Math. 2020;6:85.
  • Upreti H, Pandey AK, Kumar M. Thermophoresis and suction/injection roles on free convective MHD flow of Ag–kerosene oil nanofluid. J Comp Design Eng. 2020;7(3):386–396.
  • Hayat T, Ijaz Khan M, Farooq M, et al. Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int J of Heat Mass Transf. 2016;99:702–710.
  • Nayak MK, Akbar NS, Pandey VS, et al. 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technol. 2017;315:205–215.
  • Waqas M, Hayat T, Alsaedi A. A theoretical analysis of SWCNT–MWCNT and H2O nanofluids considering darcy–Forchheimer relation. Appl Nanosci. 2019;9:1183–1191.
  • Hayat T, Haider F, Muhammad T, et al. Darcy-Forchheimer flow by rotating disk with partial slip. Appl Math Mech (Engl Ed). 2020;41:741–752.
  • Nayak MK, Mehmood R, Makinde OD, et al. Magnetohydrodynamic flow and heat transfer impact on ZnO-SAE50 nanolubricant flow due to an inclined rotating disk. J Central South Univ. 2019;26:1146–1160.
  • Nayak MK, Shaw S, Ijaz Khan M, et al. Flow and thermal analysis on Darcy-Forchheimer flow of copper-water nanofluid due to a rotating disk: a static and dynamic approach. J Mater res Technol. 2020;9(4):7387–7408.
  • Khan NB, Imran Khan M, Khan WA, et al. Physical importance of entropy generation in fluid flow (Williamson) with nonlinear radiative heat flux. Indian J Phys. 2021;95:717–724.
  • Shaw S, Dogonchi AS, Nayak MK, et al. Impact of entropy generation and non-linear thermal radiation on Darcy-Forchheimer flow of MnFe2O4-casson/water nanofluid due to a rotating disk: an application to brain dynamics. Arab J Sci Eng. 2020;45:5471–5490.
  • Nayak MK, Shaw S, Chamkha AJ. 3D MHD free convective stretched flow of a radiativenanofluid inspired by variable magnetic field. Arab J Sci Eng. 2019;44(2):1269–1282.
  • Nayak MK. MHD 3d flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation. Int J Mech Sci. 2017;125:185–193.
  • Mishra A, Pandey AK, Kumar M. Velocity, thermal and concentration slip effects on MHD silver-water nanofluid flow past a permeable cone with suction/injection and viscous-Ohmic dissipation. Heat Transf Res. 2019;50(14):1351–1367.
  • Pandey AK, Kumar M. MHD flow inside a stretching/shrinking convergent/divergent channel with heat generation/absorption and viscous-Ohmic dissipation utilizing Cu-Water nanofluid. Comput Therm Sci. 2018;10(5):457–471..
  • Sheikholeslami M, Shehzad SA. CVFEM for influence of external magnetic source on nanofluid behavior in a permeable cavity considering shape effect. Int J Heat Mass Transf. 2017;115:180–191.
  • Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf 2018;118:823–883.
  • Sheikholeslami M, Chamkha AJ. Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A. 2016;69(10):1186–1200.
  • Von Kármán T. Überlaminare und turbulenteReibung, Zeitschrift fur Angew. Math Mech ZAMM. 1921;1:233–252.
  • Bödewadt UT. Die DrehströmungüberfestemGrund. Z Angew Math Mech. 1940;20:241–252.
  • Turkyilmazoglu M, Senel P. Heat and mass transfer of the flow due to a rotating rough and porous disk. Int J Thermal Sci. 2013;63:146–158.
  • Mustafa M. MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model. Int J Heat Mass Transf. 2017;108:1910–1916.
  • Forchheimer P. Wasserbewegungdurchboden. Zeitschrift Ver D Ing. 1901;45:1782–1788.
  • Muskat M. The flow of homogeneous fluids through porous media. Edwards (MI): International Human Resources Development; 1946.
  • Nayak MK, Mabood F, Tlili I, et al. Entropy optimization analysis on nonlinear thermal radiative electromagnetic Darcy–Forchheimer flow of SWCNT/MWCNT nanomaterials. Appl Nano Sci. 2021;11:399–418.
  • Seddeek MA. Influence of viscous dissipation and thermophoresis on Darcy- Forchheimer mixed convection in a fluid saturated porous media. J Colloid Interface Sci. 2006;293:137–142.
  • Hayat T, Muhammad T, Al-Mezal S, et al. Darcy-Forchheimer flow with variable thermal conductivity and Cattaneo-Christov heat flux. Int J Numer Methods Heat Fluid Flow. 2016;26:2355–2369.
  • Hayat T, Haider F, Alsaedi A, et al. Entropy generation analysis of Carreau fluid with entire new concepts of modified Darcy’s law and variable characteristics. Int Comm Heat Mass Trans. 2021;120:105073.
  • Bejan A. Entropy generation through heat and fluid flow. New York: Wiley; 1982.
  • Bejan A. A study of entropy generation in fundamentsl convective heat transfer. J Heat Trans. 1979;101:718–725.
  • Bejan A. Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics. Rev Therm. 1996;35:637–646.
  • Liu W, Shahsavar A, Barzinjy AA, et al. Natural convection and entropy generation of a nanofluid in two connected inclined triangular enclosures under magnetic field effects. Int Comm Heat Mass Trans. 2019;108:104309.
  • Nayak MK, Abdul Hakeem AK, Ganga B, et al. Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: a combined approach to good absorber of solar energy and intensification of heat transport. Comp Meth Prog Biomed. 2020;186:105131.
  • Muhammad R, Khan MI, Jameel M, et al. Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation. Comput Meth Prog Biomed. 2020;188:105298.
  • Chamkha AJ, Rashad AM, Mansour MA, et al. Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip. Phys Fluids. 2017;29:052001.
  • Afridi MI, Qasim M. Entropy generation and heat transfer in boundary layer flow over a thin needle moving in a parallel stream in the presence of nonlinear Rosseland radiation. Int J Therm Sci. 2018;123:117–128.
  • Nayak MK, Agbaje TM, Mondal S, et al. Thermodynamic effect in Darchy–Forchheimernanofluid flow of a single-wall carbon nanotube/multi-wall carbon nanotube suspension due to a stretching/shrinking rotating disk: Buongiorno two-phase model. J Eng Math. 2020;120:43–65.
  • Tlili I, Khan M, Salahuddin T, et al. Entropy generation minimization and chemical response for Williamson fluid flow with thermal diffusion. Appl Nanoscience. 2020;10:3123–3131.
  • Ul Haq R, Khan ZH, Hussain ST, et al. Flow and heat transfer analysis of water and ethylene glycol based Cu nanoparticles between two parallel disks with suction/injection effects. J Mol Liq. 2016;221:298–304.
  • Waqas H, Imran M, Muhammad T, et al. Numerical investigation on bioconvection flow of Oldroyd–B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk. J Thermal Anal Calorimetry. 2020; doi:10.1007/s10973-020-09728-2.
  • Ahmad R, Mustaf M, Hina S. Buongiorno model for fluid flow around a moving thin needle in a flowing nanofluid: a numerical study. Chin J Phys. 2017;55(4):1264–1274.
  • Mustafa M, Ahmad Khan J. Numerical study of partial slip effects on MHD flow of nanofluids near a convectively heated stretchable rotating disk. J Mol Liq. 2017;234::287–295.
  • Hosseinzadeh K, Mogharrebi AR, Asadi A, et al. Entropy generation analysis of mixture nanofluid (H2O/C2H6O2)-Fe3O4 flow between two stretching rotating disks under the effect of MHD ad nonlinear radiation. Int J Ambient Energy. 2019:1681294. doi:10.1080/01430750.2019.1681294.
  • Boumaiza N, Kezzar M, Eid MR, et al. On numerical and analytical solutions for mixed convection falkner-skan flow of nanofluids with variable thermal conductivity. Waves Random Complex Media. 2019. doi:10.1080/17455030.2019.1686550.
  • M.R. Eid and M.A. Nafe, Thermal conductivity variation and heat generation effects on magneto-hybrid nanofluid flow in a porous medium with slip condition. Waves Random Complex Media. 2020. doi:10.1080/17455030.2020.1810365.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.