119
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Nonplanar dust acoustic waves in a four-component dusty plasma with double spectral distributed electrons: modulational instability and rogue waves

, , & ORCID Icon
Pages 2128-2147 | Received 12 Nov 2020, Accepted 30 Jun 2021, Published online: 19 Jul 2021

References

  • Rao NN, Shukla PK, Yu MY. Dust-acoustic waves in dusty plasmas. Planet Space Sci. 1990;38:543–546.
  • Mendis DA. Cosmic dusty plasma. Annu Rev Astron Astrophys. 1994;32:419.
  • Horányi M. Charged dust dynamics in the Solar System. Annu Rev Astron Astrophys. 1996;34:383–418.
  • Bliokh P, Sinitsin V, Yaroshenko V. Dusty and self-gravitational plasmas in space. Dordrecht: Kluwer Academic; 1995.
  • Verheest F. Waves in dusty space plasmas. Dordrecht: Kluwer Academic.
  • Barkan A, Merlino RL, D’angelo N. Laboratory observation of the dust-acoustic wave mode. Phys Plasmas. 1995;2:3563–3565.
  • Mamun A A, Eliasson B, Shukla PK. Dust-acoustic solitary and shock waves in a strongly coupled liquid state dusty plasma with a vortex-like ion distribution. Phys Lett. 2004;332:412–416.
  • Tribeche M, Merriche A. Nonextensive dust-acoustic solitary waves. Phys Plasmas. 2011;18:034502.
  • Havnes O, Trøim J, Blix T, et al. J Geophys Res 1996;101:10839–10847.
  • Horányi M, Morfill G, Grün E. Mechanism for the acceleration and ejection of dust grains from Jupiter’s magnetosphere. Nature. 1993;363:144–146.
  • Zhao H, Castle G P, Inculet I I. The measurement of bipolar charge in polydisperse powders using a vertical array of Faraday pail sensors. J Electrostat. 2002;55:261–278.
  • Trigwell S, Grable N, Yurteri CU, et al. Effects of surface properties on the tribocharging characteristics of polymer powder as applied to industrial processes. IEEE Trans Ind Appl. 2003;39:79–86.
  • Chow VW, Mendis DA, Rosenberg M. Role of grain size and particle velocity distribution in secondary electron emission in space plasmas. J Geophys Res. 1993;98:19065–19076.
  • Fortov VE, Nefedov AP, Vaulina OS, et al. Dusty plasma induced by solar radiation under microgravitational conditions: an experiment on board the Mir orbiting space station. J Exp Theor Phys. 1998;87:1087–1089.
  • Mamun AA. Electrostatic solitary structures in a dusty plasma with dust of opposite polarity. Phys. Rev. E. 2008;77:026406.
  • Gill TS, Bains AS, Bedi C. Modulational instability of dust acoustic solitons in multicomponent plasma with kappa-distributed electrons and ions. Phys Plasmas. 2010;17:013701.
  • El-Taibany WF, El-Labany SK, Behery EE, et al. Nonlinear dust acoustic waves in a self-gravitating and opposite-polarity complex plasma medium. Eur Phys J Plus. 2019;134:457.
  • Hasegawa A, Kodama Y. Solitons in optical communications. Oxford University Press; 1995.
  • Vladimirov SV, Tsytovich VN, Popel SI, et al. Modulational interactions in plasmas. Dordrecht: Kluwer Academic Publishers; 1995.
  • Popel S I, Vladimirov SV, Tsytovich VN. Theory of modulational interactions in plasmas in the presence of an external magnetic field. Phys Rep. 1995;259:327–405.
  • Paul SN, Roychowdhury A. Modulational instability and on the existence of rogue wave in electron-ion-positron plasma with kappa distributed electrons. Chaos Solitons Fractals. 2016;91:406–413.
  • Rahman MH, Mannan A, Chowdhury NA, et al. Generation of rogue waves in space dusty plasmas. Phys Plasmas. 2018;25:102118.
  • Hossen MR, Nahar L, Mamun AA. Planar and nonplanar solitary waves in a four-component relativistic degenerate dense plasma. J Astrophys. 2014;2014:653065.
  • El-Labany SK, El-Taibany WF, Zedan NA. Instability of nonplanar modulated dust acoustic wave packets in a strongly coupled nonthermal dusty plasma. Phys Plasmas. 2015;22:073702.
  • Rahim Z, Adnan M, Qamar A, et al. Nonplanar dust-acoustic waves and chaotic motions in Thomas Fermi dusty plasmas. Phys Plasmas. 2018;25:083706.
  • Popel SI. Threshold energy density of lower hybrid waves in the Freja experiment. Plasma Phys Rep. 2001;27:448–450.
  • Jiulin D. Nonextensivity and the power-law distributions for the systems with self-gravitating long-range interactions. Astrophys Space Sci. 2007;312:47–55.
  • Abid AA, Khan MZ, Lu Q, et al. A generalized AZ-non-Maxwellian velocity distribution function for space plasmas. Phys Plasmas. 2017;24:033702.
  • Vasyliunas VM. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J Geophys Res. 1968;73:2839–2884.
  • Livadiotis G. Using kappa distributions to identify the potential energy. J Geophys Res. 2018;123:1050–1060.
  • Khalid S, Qureshi MN, Masood W. Nonlinear kinetic Alfven waves in space plasmas with generalized (r,q) distribution. Astrophys Space Sci. 2018;363:216.
  • Kiran Z, Shah HA, Qureshi MN, et al. Parallel proton heating in solar wind using generalized (r, q) distribution function. Sol Phys. 2006;236:167–183.
  • El-Taibany WF, Taha RM. Variable-size dust grains with generalized (r, q) electrons in a dusty plasma. Contrib Plasma Phys. 2019;59:e201800072.
  • El-Labany SK, El-Taibany WF, El-Shamy EF, et al. Nonplanar dust acoustic solitary waves in a strongly coupled dusty plasma with superthermal ions. Phys Plasmas. 2014;21:123710.
  • Qureshi MN, Shi JK, Ma SZ. Landau damping in space plasmas with generalized (r, q) distribution function. Phys Plasmas. 2005;12:122902.
  • Ellis TA, Neff JS. Numerical simulation of the emission and motion of neutral and charged dust from P/halley. Icarus. 1991;91:280.
  • Havnes O, Trøim J, Blix T, et al. First detection of charged dust particles in the earth's mesosphere. J Geophys Res. 1996;101:10839.
  • Mannan A, Mamun AA. Nonplanar dust-acoustic Gardner solitons in a four-component dusty plasma. Phys Rev E. 2011;84:026408.
  • Taniuti T, Yajima N. Perturbation method for a nonlinear wave modulation. I. J Math Phys. 1969;10:1369–1372.
  • El-Labany SK, El-Shamy EF, El-Taibany WF, et al. Modeling of nonlinear envelope solitons in strongly coupled dusty plasmas: instability and collision. Chin Phys B. 2015;24:035201.
  • Xue J, Lang H. Modulational instability of cylindrical and spherical dust ion-acoustic waves. Phys Plasmas. 2003;10:339–342.
  • Zakharov VE, Ostrovsky LA. Modulation instability: the beginning. Physica D. 2009;238:540–548.
  • Guo S, Mei L, Sun A. Nonlinear ion-acoustic structures in a nonextensive electron–positron–ion–dust plasma: modulational instability and rogue waves. Ann Phys. 2012;332:38–55.
  • Misra AP, Chowdhury AR. Modulational instability of dust acoustic waves in a dusty plasma with nonthermal electrons and ions. Eur Phys J. 2006;39:49–57.
  • Akhmediev N, Ankiewicz A, Taki M. Waves that appear from nowhere and disappear without a trace. Phys Lett A. 2009;373:675–678.
  • Ankiewicz A, Devine N, Akhmediev N. Are rogue waves robust against perturbations? Phys Lett A. 2009 Oct 19;373:3997–4000.
  • Peregrine DH. Water waves, nonlinear Schrödinger equations and their solutions. ANZIAM J. 1983;25:16–43.
  • Popel SI, Tsytovich VN, Vladimirov SV. Modulational instability of Langmuir wave packets. Phys Plasmas. 1994;1:2176–2188.
  • El-Bedwehy NA, El-Taibany WF. Modulational instability of dust-ion acoustic waves in the presence of generalized (r, q) distributed electrons. Phys Plasmas. 2020;27:012107.
  • Cui J, Yelle RV, Volk K. Distribution and escape of molecular hydrogen in titan's thermosphere and exosphere. J Geophys Res. 2008;113:E10004.
  • Kallio E, Chaufray JY, Modolo R, et al. Modeling of Venus, Mars, and Titan. In: The plasma environment of Venus, Mars, and Titan. New York: Springer; 2011. p. 267-307.
  • Bostrom R. Observations of weak double layers on auroral field lines. IEEE Trans Plasma Sci. 1992;20:756–763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.