106
Views
0
CrossRef citations to date
0
Altmetric
Rough Surface Scattering, Complex Targets, and Remote Sensing

Concept, realization, and applications of coding metasurfaces

, &
Pages 1474-1485 | Received 09 Nov 2021, Accepted 17 May 2022, Published online: 06 Nov 2023

References

  • Yang F, Rahmat-Samii Y. Surface electromagnetics: with applications in antenna, microwave, and optical engineering. Cambrige: Cambridge University Press; 2019.
  • Chen HT, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys. 2016;79(7):076401.
  • Qiu CW, Zhang T, Hu G, et al. Quo vadis, metasurfaces?. Nano Lett. 2021;21(13):5461–5474.
  • Sun S, Yang KY, Wang CM, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 2012;12(12):6223–6229.
  • Zhang F, Song Q, Yang GM, et al. Generation of wideband vortex beam with different oam modes using third-order meta-frequency selective surface. Opt Express. 2019;27(24):34864–34875.
  • Bao Y, Ni J, Qiu CW. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Advanced Materials. 2020;32(6):1905659.
  • Wang X, Yang GM. Linear-polarization metasurface converter with an arbitrary polarization rotating angle. Opt Express. 2021 Sep;29(19):30579–30589.
  • Zhang F, Yang GM, Jin YQ. Low-profile circularly polarized transmitarray for wide-angle beam control with a third-order meta-FSS. IEEE Trans Antennas Propag. 2020;68(5):3586–3597.
  • Zhang F, Yang GM, Jin YQ. Design and analysis of linear to circular polarization converter with third-order meta-frequency selective surfaces. IEEE Trans Antennas Propag. 2020;68(9):6646–6655.
  • Li M, Guo L, Dong J, et al. An ultra-thin chiral metamaterial absorber with high selectivity for lcp and rcp waves. J Phys D: Appl Phys. 2014;47(18):185102.
  • Song Z, Zhang J. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies. Opt Express. 2020;28(8):12487–12497.
  • Guo X, Ding Y, Duan Y, et al. Nonreciprocal metasurface with space–time phase modulation. Light Sci Appl. 2019;8(1):1–9.
  • Taravati S, Khan BA, Gupta S, et al. Nonreciprocal nongyrotropic magnetless metasurface. IEEE Trans Antennas Propag. 2017;65(7):3589–3597.
  • Chen Y, Zhao C, Zhang Y, et al. Integrated molar chiral sensing based on high-q metasurface. Nano Lett. 2020;20(12):8696–8703.
  • Ni J, Huang C, Zhou LM, et al. Multidimensional phase singularities in nanophotonics. Sciences. 2021;374(6566):eabj0039.
  • Cui TJ, Qi MQ, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl. 2014;3(10):e218.
  • Della Giovampaola C, Engheta N. Digital metamaterials. Nat Mater. 2014;13(12):1115–1121.
  • Qu G, Yang W, Song Q, et al. Reprogrammable meta-hologram for optical encryption. Nat Commun. 2020;11(1):1–5.
  • Zhang XG, Jiang WX, Jiang HL, et al. An optically driven digital metasurface for programming electromagnetic functions. Nat Electron. 2020;3(3):165–171.
  • Zhao H, Shuang Y, Wei M, et al. Metasurface-assisted massive backscatter wireless communication with commodity wi-fi signals. Nat Commun. 2020;11(1):1–10.
  • Cui TJ, Liu S, Li LL. Information entropy of coding metasurface. Light Sci Appl. 2016;5(11):e16172–e16172.
  • Liu S, Cui TJ, Xu Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci Appl. 2016;5(5):e16076–e16076.
  • Saifullah Y, Waqas AB, Yang GM, et al. 4-bit optimized coding metasurface for wideband rcs reduction. IEEE Access. 2019;7:122378–122386.
  • Saifullah Y, Waqas AB, Yang GM, et al. Multi-bit dielectric coding metasurface for em wave manipulation and anomalous reflection. Opt Express. 2020;28(2):1139–1149.
  • Sui S, Ma H, Wang J, et al. Absorptive coding metasurface for further radar cross section reduction. J Phys D. 2018;51(6):065603.
  • Lin M, Xu M, Wan X, et al. Single sensor to estimate doa with programmable metasurface. IEEE Internet Things J. 2021;8(12):10187–10197.
  • Shen Z, Jin B, Zhao J, et al. Design of transmission-type coding metasurface and its application of beam forming. Appl Phys Lett. 2016;109(12):121103.
  • Wu J, Shen Z, Ge S, et al. Liquid crystal programmable metasurface for terahertz beam steering. Appl Phys Lett. 2020;116(13):131104.
  • Zhang L, Wu RY, Bai GD, et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves. Adv Funct Mater. 2018;28(33):1802205.
  • Liu S, Cui TJ, Zhang L, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv Sci. 2016;3(10):1600156.
  • Li YB, Li LL, Xu BB, et al. Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging. Sci Rep. 2016;6(1):1–8.
  • Li L, Cui TJ, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun. 2017;8(1):777.
  • Shang G, Li H, Wang Z, et al. Coding metasurface holography with polarization-multiplexed functionality. J Appl Phys. 2021;129(3):035304.
  • Zhang L, Cui TJ. Space-time-coding digital metasurfaces: principles and applications. Research. 2021;2021:9802673.
  • Taravati S, Kishk AA. Space-time modulation: principles and applications. IEEE Microw Mag. 2020;21(4):30–56.
  • Ptitcyn G, Mirmoosa MS, Tretyakov SA. Time-modulated meta-atoms. Phys Rev Res. 2019 Sep;1:023014.
  • Caloz C, Deck-Léger ZL. Spacetime metamaterials-part I: general concepts. IEEE Trans Antennas Propag. 2019;68(3):1569–1582.
  • Shaltout AM, Shalaev VM, Brongersma ML. Spatiotemporal light control with active metasurfaces. Sciences. 2019;364(6441):eaat3100.
  • Wang X, Caloz C. Spread-spectrum selective camouflaging based on time-modulated metasurface. IEEE Trans Antennas Propag. 2021;69(1):286–295.
  • Liu M, Kozyrev AB, Shadrivov IV. Time-varying metasurfaces for broadband spectral camouflage. Phys Rev Appl. 2019;12(5):054052.
  • Wang X, Caloz C. Pseudorandom sequence (space-) time-modulated metasurfaces: principles, operations, and applications. IEEE Antennas Propag Mag. 2022;3:1–10.
  • Wang X, Yang GM. Time-coding spread-spectrum reconfigurable intelligent surface for secure wireless communication: theory and experiment. Opt Express. 2021 Sep;29(20):32031–32041.
  • Zhao J, Yang X, Dai JY, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl Sci Rev. 2019;6(2):231–238.
  • Dai JY, Tang WK, Zhao J, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface. Adv Mater Technol. 2019;4(7):1900044.
  • Karl N, Vabishchevich PP, Shcherbakov MR, et al. Frequency conversion in a time-variant dielectric metasurface. Nano Lett. 2020;20(10):7052–7058.
  • Wu Z, Grbic A. Serrodyne frequency translation using time-modulated metasurfaces. IEEE Trans Antennas Propag. 2020;68(3):1599–1606.
  • Ramaccia D, Sounas DL, Alù A, et al. Phase-induced frequency conversion and doppler effect with time-modulated metasurfaces. IEEE Trans Antennas Propag. 2019;68(3):1607–1617.
  • Zhang L, Chen XQ, Liu S, et al. Space-time-coding digital metasurfaces. Nat Commun. 2018;9(1):917.
  • Saifullah Y, Chen Q, Yang GM, et al. Dual-band multi-bit programmable reflective metasurface unit cell: design and experiment. Opt Express. 2021;29(2):2658–2668.
  • Balanis CA. Antenna theory analysis and design. New Jersey: John Wiley & Sons; 2015.
  • Chen Q, Saifullah Y, Yang GM, et al. Electronically reconfigurable unit cell for transmit-reflect-arrays in the x-band. Opt Express. 2021;29(2):1470–1480.
  • Eskandar H, Sadollah A, Bahreininejad A, et al. Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct. 2012;110–111:151–166.
  • Simon M, Omura J, Scholtz R, et al. Spread spectrum communications handbook. New York City: McGraw-Hill Education; 2002.
  • Huang C, Zappone A, Alexandropoulos GC, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans Wirel Commun. 2019;18(8):4157–4170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.