297
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A comparative assessment of subjective experience in simulator and on-road driving under normal and time pressure driving conditions

, ORCID Icon &
Pages 116-131 | Received 16 Apr 2022, Accepted 14 Aug 2022, Published online: 23 Aug 2022

References

  • Allen, R. W., Park, G. D., Cook, M. L., & Fiorentino, D. (2007). The effect of driving simulator fidelity on training effectiveness [Paper presentation]. DSC 2007 North America, 1–15.
  • Almallah, M., Alfahel, R., Hussain, Q., Alhajyaseen, W. K. M., & Dias, C. (2020). Empirical evaluation of drivers’ start-up behavior at signalized intersection using driving simulator. Procedia Computer Science, 170, 227–234. https://doi.org/10.1016/j.procs.2020.03.034
  • Almallah, M., Hussain, Q., Reinolsmann, N., & Alhajyaseen, W. K. M. (2021). Driving simulation sickness and the sense of presence: Correlation and contributing factors. Transportation Research Part F: Traffic Psychology and Behaviour, 78, 180–193. https://doi.org/10.1016/j.trf.2021.02.005
  • Arbuckle, J. L. (2013). IBM® SPSS® AmosTM 22 User’s Guide.
  • Awan, H., Sajid, S., Declercq, K., Adnan, M., Pirdavani, A., Alhajyaseen, W., & Brijs, T. (2018). Drivers’ crossing behaviour between express and local lanes with soft separation: A driving simulator study. Advances in Transportation Studies.
  • Azevedo, C. L., & Farah, H. (2015). Using extreme value theory for the prediction of head-on collisions during passing maneuvres [Paper presentation]. 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 268–273. https://doi.org/10.1109/ITSC.2015.53
  • Bailenson, J. N., & Yee, N. (2006). A longitudinal study of task performance, head movements, subjective report, simulator sickness, and transformed social interaction in collaborative virtual environments. Presence: Teleoperators and Virtual Environments, 15(6), 699–716. https://doi.org/10.1162/pres.15.6.699
  • Blana, E. (2001). The behavioural validation of driving simulators as research tools: A case study based on the leeds driving simulator. The University of Leeds.
  • Brooks, J. O., Goodenough, R. R., Crisler, M. C., Klein, N. D., Alley, R. L., Koon, B. L., Logan, W. C., Ogle, J. H., Tyrrell, R. A., & Wills, R. F. (2010). Simulator sickness during driving simulation studies. Accident Analysis and Prevention, 42(3), 786–794. https://doi.org/10.1016/j.aap.2009.04.013
  • Choudhary, P., Pawar, N. M., Velaga, N. R., & Pawar, D. S. (2020). Overall performance impairment and crash risk due to distracted driving: A comprehensive analysis using structural equation modelling. Transportation Research Part F: Traffic Psychology and Behaviour, 74, 120–138. https://doi.org/10.1016/j.trf.2020.08.018
  • Cobb, S. V. G., Nichols, S., Ramsey, A., & Wilson, J. R. (1999). Virtual reality-induced symptoms and effects (VRISE). Presence: Teleoperators and Virtual Environments, 8(2), 169–186. https://doi.org/10.1162/105474699566152
  • Doroudgar, S., Chuang, H. M., Perry, P. J., Thomas, K., Bohnert, K., & Canedo, J. (2017). Driving performance comparing older versus younger drivers. Traffic Injury Prevention, 18(1), 41–46. https://doi.org/10.1080/15389588.2016.1194980
  • Dużmańska, N., Strojny, P., & Strojny, A. (2018). Can simulator sickness be avoided? A review on temporal aspects of simulator sickness. Frontiers in Psychology, 9, 2132. https://doi.org/10.3389/fpsyg.2018.02132
  • Dziuda, Ł., Biernacki, M. P., Baran, P. M., & Truszczyński, O. E. (2014). The effects of simulated fog and motion on simulator sickness in a driving simulator and the duration of after-effects. Applied Ergonomics, 45(3), 406–412. https://doi.org/10.1016/j.apergo.2013.05.003
  • Farah, H., & Lima, C. (2017). Safety analysis of passing maneuvers using extreme value theory. IATSS Research, 41(1), 12–21. https://doi.org/10.1016/j.iatssr.2016.07.001
  • Fausten, M. (2010). Accident avoidance by evasive manoeuvres. Tagung Fahrerassistenz, 4, 1–20.
  • Fitzpatrick, C. D., Samuel, S., & Knodler, M. A. (2017). The use of a driving simulator to determine how time pressures impact driver aggressiveness. Accident; Analysis and Prevention, 108(August), 131–138. https://doi.org/10.1016/j.aap.2017.08.017
  • Forrester, J. V., Dick, A. D., McMenamin, P. G., Roberts, F., & Pearlman, E. (2016). Physiology of vision and the visual system. In The Eye: Basic Sciences in Practice (pp. 269–337.e2). https://doi.org/10.1016/b978-0-7020-5554-6.00005-8
  • Gelau, C., Sirek, J., & Dahmen-Zimmer, K. (2011). Effects of time pressure on left-turn decisions of elderly drivers in a fixed-base driving simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 14(1), 76–86. https://doi.org/10.1016/j.trf.2010.10.002
  • Gemonet, E., Bougard, C., Honnet, V., Poueyo, M., Masfrand, S., & Mestre, D. R. (2021). Drivers’ performances and their subjective feelings about their driving during a 40-min test on a circuit versus a dynamic simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 78, 466–479. https://doi.org/10.1016/j.trf.2021.03.001
  • Grassini, S., Laumann, K., de Martin Topranin, V., & Thorp, S. (2021). Evaluating the effect of multi-sensory stimulations on simulator sickness and sense of presence during HMD-mediated VR experience. Ergonomics, 64(12), 1511–1532. https://doi.org/10.1080/00140139.2021.1941279
  • Grassini, S., Laumann, K., & Luzi, A. K. (2021). Association of individual factors with simulator sickness and sense of presence in virtual reality mediated by head-mounted displays (Hmds). Multimodal Technologies and Interaction, 5(3), 7. https://doi.org/10.3390/mti5030007
  • Guo, C., Sentouh, C., Popieul, J. C., & Haué, J. B. (2019). Predictive shared steering control for driver override in automated driving: A simulator study. Transportation Research Part F: Traffic Psychology and Behaviour, 61, 326–336. https://doi.org/10.1016/j.trf.2017.12.005
  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (task load index): Results of empirical and theoretical research. Advances in Psychology, 52, 139–183. https://doi.org/10.1016/S0166-4115(08)62386-9
  • Heitz, D. (2018). Motion sickness. https://www.healthline.com/health/motion-sickness
  • Helland, A., Jenssen, G. D., Lervåg, L. E., Moen, T., Engen, T., Lydersen, S., Mørland, J., & Slørdal, L. (2016). Evaluation of measures of impairment in real and simulated driving: Results from a randomized, placebo-controlled study. Traffic Injury Prevention, 17(3), 245–250. https://doi.org/10.1080/15389588.2015.1065975
  • Herbelin, B., Vexo, F., & Thalmann, D. (2002). Sense of presence in virtual reality exposures therapy [Paper presentation]. First International Workshop on Virtual Reality Rehabilitation.
  • Hussain, Q., Alhajyaseen, W., Brijs, K., Pirdavani, A., & Brijs, T. (2020a). Improved traffic flow efficiency during yellow interval at signalized intersections using a smart countdown system. IEEE Transactions on Intelligent Transportation Systems, 23(3), 1910–1959. https://doi.org/10.1109/TITS.2020.3030130
  • Hussain, Q., Alhajyaseen, W. K. M., Brijs, K., Pirdavani, A., & Brijs, T. (2020b). Innovative countermeasures for red light running prevention at signalized intersections: A driving simulator study. Accident; Analysis and Prevention, 134, 105349. https://doi.org/10.1016/j.aap.2019.105349
  • Hussain, Q., Alhajyaseen, W. K. M., Pirdavani, A., Reinolsmann, N., Brijs, K., & Brijs, T. (2019). Speed perception and actual speed in a driving simulator and real-world: A validation study. Transportation Research Part F: Traffic Psychology and Behaviour, 62, 637–650. https://doi.org/10.1016/j.trf.2019.02.019
  • Hussain, Q., Alhajyaseen, W. K. M., Reinolsmann, N., Brijs, K., Pirdavani, A., Wets, G., & Brijs, T. (2021). Optical pavement treatments and their impact on speed and lateral position at transition zones: A driving simulator study. Accident; Analysis and Prevention, 150 (November 2020). 105916. https://doi.org/10.1016/j.aap.2020.105916
  • Hussain, Q., Almallah, M., Alhajyaseen, W. K. M., & Dias, C. (2020). Impact of the geometric field of view on drivers’ speed perception and lateral position in driving simulators. Procedia Computer Science, 170, 18–25. https://doi.org/10.1016/j.procs.2020.03.005
  • Hussain, Q., Pirdavani, A., Ariën, C., Brijs, T., & Alhajyaseen, W. (2018). The impact of perceptual countermeasures on driving behavior in rural-urban transition road segments: A driving simulator study. Advances in Transportation Studies, 46, 83–96. https://doi.org/10.4399/9788255186417
  • Inata, K., Raksincharoensak, P., & Nagai, M. (2008). Driver behavior modeling based on database of personal mobility driving in urban area [Paper presentation]. 2008 International Conference on Control, Automation and Systems, 2902–2907. https://doi.org/10.1109/ICCAS.2008.4694252
  • Jacobs, M., van der Zwaan, K. F., Hart, E. P., Groeneveld, G. J., & Roos, R. A. C. (2019). Comparable rates of simulator sickness in Huntington’s disease and healthy individuals. Transportation Research Part F: Traffic Psychology and Behaviour, 60, 499–504. https://doi.org/10.1016/j.trf.2018.11.007
  • Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203–220. https://doi.org/10.1207/s15327108ijap0303_3
  • Keshavarz, B., & Hecht, H. (2012). Visually induced motion sickness and presence in videogames: The role of sound. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 1763–1767. https://doi.org/10.1177/1071181312561354
  • Keshavarz, B., Ramkhalawansingh, R., Haycock, B., Shahab, S., & Campos, J. L. (2018). Comparing simulator sickness in younger and older adults during simulated driving under different multisensory conditions. Transportation Research Part F: Traffic Psychology and Behaviour, 54, 47–62. https://doi.org/10.1016/j.trf.2018.01.007
  • Klüver, M., Herrigel, C., Heinrich, C., Schöner, H. P., & Hecht, H. (2016). The behavioral validity of dual-task driving performance in fixed and moving base driving simulators. Transportation Research Part F: Traffic Psychology and Behaviour, 37, 78–96. https://doi.org/10.1016/j.trf.2015.12.005
  • Klüver, M., Herrigel, C., Preuß, S., Schöner, H.-P., & Hecht, H. (2015). Comparing the incidence of simulator sickness in five different driving simulators. In Driving Simulation Conference 2015 (pp. 16–18).
  • Lee, Y. C., & LaVoie, N. (2018). Instruction-prompted objective behaviors as proxy for subjective measures in a driving simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 55, 58–66. https://doi.org/10.1016/j.trf.2018.03.002
  • Li, X., Oviedo-Trespalacios, O., Rakotonirainy, A., & Yan, X. (2019). Collision risk management of cognitively distracted drivers in a car-following situation. Transportation Research Part F: Traffic Psychology and Behaviour, 60, 288–298. https://doi.org/10.1016/j.trf.2018.10.011
  • Lin, J. J. W., Duh, H. B. L., Parker, D. E., Abi-Rached, H., & Furness, T. A. (2002). Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment [Paper presentation]. Proceedings - Virtual Reality Annual International Symposium, 2002, 164–171. https://doi.org/10.1109/vr.2002.996519
  • Lucas, G., Kemeny, A., Paillot, D., & Colombet, F. (2020). A simulation sickness study on a driving simulator equipped with a vibration platform. Transportation Research Part F: Traffic Psychology and Behaviour, 68, 15–22. https://doi.org/10.1016/j.trf.2019.11.011
  • Matas, N. A., Nettelbeck, T., & Burns, N. R. (2015). Dropout during a driving simulator study: A survival analysis. Journal of Safety Research, 55, 159–169. https://doi.org/10.1016/j.jsr.2015.08.004
  • McNabb, J., Kuzel, M., & Gray, R. (2017). I’ll show you the way: Risky driver behavior when “following a friend”. Frontiers in Psychology, 8, 705. https://doi.org/10.3389/fpsyg.2017.00705
  • Milleville-Pennel, I., & Charron, C. (2015). Do mental workload and presence experienced when driving a real car predispose drivers to simulator sickness? An exploratory study. Accident; Analysis and Prevention, 74, 192–202. https://doi.org/10.1016/j.aap.2014.10.021
  • Min, B. C., Chung, S. C., Min, Y. K., & Sakamoto, K. (2004). Psychophysiological evaluation of simulator sickness evoked by a graphic simulator. Applied Ergonomics, 35(6), 549–556. https://doi.org/10.1016/j.apergo.2004.06.002
  • Mourant, R. R., & Thattacherry, T. R. (2000). Simulator sickness in a virtual environments driving simulator [Paper presentation]. Proceedings of the XIVth Triennial Congress of the International Ergonomics Association and 44th Annual Meeting of the Human Factors and Ergonomics Association, “Ergonomics for the New Millennium (pp. 534–537). https://doi.org/10.1177/154193120004400513
  • Nickkar, A., Jeihani, M., & Sahebi, S. (2019). Analysis of driving simulator sickness symptoms: zero-inflated ordered probit approach. Transportation Research Record: Journal of the Transportation Research Board, 2673(4), 988–1000. https://doi.org/10.1177/0361198119841573
  • Oviedo-Trespalacios, O., Haque, M. M., King, M., & Washington, S. (2017). Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers. Accident; Analysis and Prevention, 101, 67–77. https://doi.org/10.1016/j.aap.2017.01.018
  • Paschalidis, E., Choudhury, C. F., & Hess, S. (2018). Modelling the effects of stress on gap-acceptance decisions combining data from driving simulator and physiological sensors. Transportation Research Part F: Traffic Psychology and Behaviour, 59, 418–435. https://doi.org/10.1016/j.trf.2018.09.019
  • Pawar, N. M., Khanuja, R. K., Choudhary, P., & Velaga, N. R. (2020). Modelling braking behaviour and accident probability of drivers under increasing time pressure conditions. Accident; Analysis and Prevention, 136, 105401. https://doi.org/10.1016/j.aap.2019.105401
  • Pawar, N. M., & Velaga, N. R. (2020). Modelling the influence of time pressure on reaction time of drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 72, 1–22. https://doi.org/10.1016/j.trf.2020.04.017
  • Pawar, N. M., & Velaga, N. R. (2021a). Effect of time pressure on steering control of the drivers in a car-following situation. Transportation Research Part F: Traffic Psychology and Behaviour, 80, 218–236. https://doi.org/10.1016/j.trf.2021.04.007
  • Pawar, N. M., & Velaga, N. R. (2021b). Investigating the influence of time pressure on overtaking maneuvers and crash risk. Transportation Research Part F: Traffic Psychology and Behaviour, 82, 268–284. https://doi.org/10.1016/j.trf.2021.08.017
  • Pawar, N. M., & Velaga, N. R. (2022). Analyzing the impact of time pressure on drivers’ safety by assessing gap-acceptance behavior at un-signalized intersections. Safety Science, 147 (March 2021), 105582. https://doi.org/10.1016/j.ssci.2021.105582
  • Pawar, N. M., Velaga, N. R., & Sharmila, R. B. (2022). Exploring behavioral validity of driving simulator under time pressure driving conditions of professional drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 89, 29–52. https://doi.org/10.1016/j.trf.2022.06.004
  • Reinhard, R., Rutrecht, H. M., Hengstenberg, P., Tutulmaz, E., Geissler, B., Hecht, H., & Muttray, A. (2017). The best way to assess visually induced motion sickness in a fixed-base driving simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 48, 74–88. https://doi.org/10.1016/j.trf.2017.05.005
  • Reinolsmann, N., Alhajyaseen, W., Brijs, T., Pirdavani, A., Hussain, Q., & Brijs, K. (2019). Investigating the impact of dynamic merge control strategies on driving behavior on rural and urban expressways – A driving simulator study. Transportation Research Part F: Traffic Psychology and Behaviour, 65, 469–484. https://doi.org/10.1016/j.trf.2019.08.010
  • Reinolsmann, N., Brijs, K., Brijs, T., Alhajyaseen, W., Cornu, J., & Mollu, K. (2018). Variable message sign strategies for congestion warning on motorways–A driving simulator study. Advances in Transportation Studies.
  • Rendon-Velez, E., van Leeuwen, P. M., Happee, R., Horváth, I., van der Vegte, W. F., & de Winter, J. C. F. (2016). The effects of time pressure on driver performance and physiological activity: A driving simulator study. Transportation Research Part F: Traffic Psychology and Behaviour, 41, 150–169. https://doi.org/10.1016/j.trf.2016.06.013
  • Rendon-velez, E., Vegte, I. H., & Der, W. W. F. v (2011). Identifying indicators of driving in a hurry [Paper presentation]. ASME 2011 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers (pp. 111–125). https://doi.org/10.1115/IMECE2011-62370
  • Salminen, S., & Lähdeniemi, E. (2002). Risk factors in work-related traffic. Transportation Research Part F: Traffic Psychology and Behaviour, 5(1), 77–86. https://doi.org/10.1016/S1369-8478(02)00007-4
  • Schmidt-daffy, M. (2013). Fear and anxiety while driving: Differential impact of task demands, speed and motivation. Transportation Research Part F: Traffic Psychology and Behaviour, 16, 14–28. https://doi.org/10.1016/j.trf.2012.07.002
  • Schubert, T., Friedmann, F., & Regenbrecht, H. (2001). The experience of presence: Factor analytic insights. Presence: Teleoperators and Virtual Environments, 10(3), 266–281. https://doi.org/10.1162/105474601300343603
  • Stoner, H. A., Fisher, D. L., & Mollenhauer, M. (2011). Simulator and scenario factors influencing simulator sickness. In Handbook of driving simulation for engineering, medicine, and Psychology (pp. 14.1–14.11).
  • van Leeuwen, P. M., Happee, R., & de Winter, J. C. F. (2015). Changes of driving performance and gaze behavior of novice drivers during a 30-min simulator-based training. Procedia Manufacturing, 3, 3325–3332. https://doi.org/10.1016/j.promfg.2015.07.422
  • Wang, X., Chen, M., Zhu, M., & Tremont, P. (2016). Development of a kinematic-based forward collision warning algorithm using an advanced driving simulator. IEEE Transactions on Intelligent Transportation Systems, 17(9), 2583–2591. https://doi.org/10.1109/TITS.2016.2528508
  • Yadav, A. K., Khanuja, R. K., & Velaga, N. R. (2020). Gender differences in driving control of young alcohol-impaired drivers. Drug and Alcohol Dependence, 213 (October 2019), 108075. https://doi.org/10.1016/j.drugalcdep.2020.108075
  • Yadav, A. K., & Velaga, N. R. (2019). Modelling the relationship between different Blood Alcohol Concentrations and reaction time of young and mature drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 64, 227–245. https://doi.org/10.1016/j.trf.2019.05.011
  • Yadav, A. K., & Velaga, N. R. (2020). An investigation on the risk factors associated with driving errors under the influence of alcohol using structural equation modeling. Traffic Injury Prevention, 21(4), 288–294. https://doi.org/10.1080/15389588.2020.1753039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.