418
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Comparative electrochemistry of haemoglobin on the long and ball milling shortened carbon nanotubes

, , , &
Pages 249-260 | Received 19 Oct 2010, Accepted 05 Jan 2012, Published online: 07 Aug 2012

References

  • Wang , L and Wang , E K . 2004 . Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode . Electrochem. Commun. , 6 : 49 – 54 .
  • Zhao , G C , Yin , Z Z , Zhang , L and Wei , X W . 2005 . Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2 . Electrochem. Commun. , 7 : 256 – 260 .
  • Ding , X , Hu , J and Li , Q . 2006 . Direct electrochemistry and superficial characterization of DNA-cytochrome c-MUA films on chemically modified gold surface . Talanta , 68 : 653 – 658 .
  • Kumar , S A and Chen , S M . 2007 . Myoglobin/arylhydroxylamine film modified electrode: Direct electrochemistry and electrochemical catalysis . Talanta , 72 : 831 – 838 .
  • Faulkner , K M , Bonaventura , C and Crumbliss , A L . 1995 . A spectroelectrochemical method for differentiation of steric and electronic effects in hemoglobins and myoglobins . J. Biol. Chem. , 270 : 13604 – 13612 .
  • Fan , C H , Suzuki , I , Chen , Q , Li , G X and Anzai , J I . 2000 . An unmediated hydrogen peroxide sensor based on a hemoglobin-SDS film modified electrode . Anal. Lett. , 33 : 2631 – 2644 .
  • Yu , J H and Ju , H X . 2003 . Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol–gel film . Anal. Chim. Acta. , 486 : 209 – 216 .
  • Heller , A . 1990 . Electrical wiring of redox enzymes . Acc. Chem. Res. , 23 : 128 – 134 .
  • Armstrong , F A . 1990 . Bioinorganic Chemistry Structure and Bonding , Berlin/Heidelberg : Springer .
  • Nassar , A E , Willis , W S and Rusling , J F . 1995 . Electron transfer from electrodes to myoglobin: Facilitated in surfactant films and blocked by adsorbed biomacromolecules . Anal. Chem. , 67 : 2386 – 2392 .
  • Sun , H , Hu , N and Ma , H . 2000 . Direct electrochemistry of hemoglobin in polyacrylamide hydrogel films on pyrolytic graphite electrodes . Electroanalysis , 12 : 1064 – 1070 .
  • Zhou , Y L , Hu , N F , Zeng , Y H and Rusling , J F . 2002 . Heme protein-clay films: Direct electrochemistry and electrochemical catalysis . Langmuir , 18 : 211 – 219 .
  • Han , X J , Huang , W M , Jia , J B , Dong , S J and Wang , E . 2002 . Direct electrochemistry of hemoglobin in egg–phosphatidylcholine films and its catalysis to H2O2 . Biosens. Bioelectron. , 17 : 741 – 746 .
  • Han , X J , Cheng , W L , Zhang , Z L , Dong , S J and Wang , E . 2002 . Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles . Biochim. Biophys. Acta , 1556 : 273 – 277 .
  • Zhao , G , Feng , J J , Xu , J J and Chen , H Y . 2005 . Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film . Electrochem. Commun. , 7 : 724 – 729 .
  • Yin , F , Shin , H K and Kwon , Y S . 2005 . A hydrogen peroxide biosensor based on Langmuir–Blodgett technique: Direct electron transfer of hemoglobin in octadecylamine layer . Talanta , 67 : 221 – 226 .
  • Zhao , Y D , Bi , Y H and Zhang , W D . 2005 . The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2 . Talanta , 65 : 489 – 494 .
  • Ding , X Q , Hu , J B and Li , Q L . 2006 . Direct electrochemistry and superficial characterization of DNA-cytochrome c-MUA films on chemically modified gold surface . Talanta , 68 : 653 – 658 .
  • Yan , Y M , Zheng , W , Zhang , M N , Wang , L , Su , L and Mao , L Q . 2005 . Bioelectrochemically functional nanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes: Facilitated electron transfer of assembled proteins with enhanced faradic response . Langmuir , 21 : 6560 – 6566 .
  • Xu , Z A , Gao , N , Chen , H J and Dong , S J . 2005 . Biopolymer and carbon nanotubes interface prepared by self-assembly for studying the electrochemistry of microperoxidase-11 . Langmuir , 21 : 10808 – 10813 .
  • Zhao , F , Wu , X E , Wang , M K , Liu , Y , Gao , L X and Dong , S J . 2004 . Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials . Anal. Chem. , 76 : 4960 – 4967 .
  • Moore , R R , Banks , C E and Compton , R G . 2004 . Basal plane pyrolytic graphite modified electrodes: Comparison of carbon nanotubes and graphite powder as electrocatalysts . Anal. Chem. , 76 : 2677 – 2682 .
  • Pacios , M , del Valle , M , Bartroli , J and Esplandiu , M J . 2008 . Electrochemical behavior of rigid carbon nanotube composite electrodes . J. Electroanal. Chem. , 619–620 : 117 – 124 .
  • Shelimov , K B , Esenaliev , R O , Rinzler , A G , Huffman , C B and Smalley , R E . 1998 . Purification of single-wall carbon nanotubes by ultrasonically assisted filtration . Chem. Phys. Lett. , 282 : 429 – 434 .
  • Venema , L C , Wildoer , J WG , Tuinstra , H LJT , Dekker , C , Rinzler , A G and Smalley , R E . 1997 . Length control of individual carbon nanotubes by nanostructuring with a scanning tunneling microscope . Appl. Phys. Lett. , 71 : 2629 – 2631 .
  • Pierard , N , Fonseca , A , Konya , Z , Willems , I , Van Tendeloo , G and Nagy , B J . 2001 . Production of short carbon nanotubes with open tips by ball milling . Chem. Phys. Lett. , 335 : 1 – 8 .
  • Chi , Z H and Asher , S A . 1998 . UV resonance Raman determination of protein acid denaturation: Selective unfolding of helical segments of horse myoglobin . Biochemistry , 37 : 2865 – 2872 .
  • Luo , H X , Shi , Z J , Li , N Q , Gu , Z N and Zhuang , Q K . 2001 . Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode . Anal. Chem. , 73 : 915 – 920 .
  • Liu , S Q , Lin , B P , Yang , X D and Zhang , Q Q . 2007 . Carbon-nanotube-enhanced direct electron-transfer reactivity of hemoglobin immobilized on polyurethane elastomer film . J. Phys. Chem. B , 111 : 1182 – 1188 .
  • Cai , C X and Chen , J . 2004 . Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode . Anal. Biochem. , 325 : 285 – 292 .
  • Yang , J , Hu , N F and Rusling , J F . 1999 . Enhanced electron transfer for hemoglobin in poly (ester sulfonic acid) films on pyrolytic graphite electrodes . J. Electroanal. Chem. , 463 : 53 – 62 .
  • Laviron , E . 1979 . General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems . J. Electroanal. Chem. , 101 : 19 – 28 .
  • Wang , C H , Yang , C , Song , Y Y , Gao , W and Xia , X H . 2005 . Adsorption and direct electron transfer from hemoglobin into a three-dimensionally ordered macroporous gold film . Adv. Funct. Mater. , 15 : 1267 – 1275 .
  • Nassar , A EF , Zhang , Z , Chynwat , V , Frank , H A and Rusling , J F . 1995 . Orientation of myoglobin in cast multibilayer membranes of amphiphilic molecules . J. Phys. Chem. , 99 : 11013 – 11017 .
  • Pumera , M , Merkoci , A and Alegret , S . 2006 . Carbon nanotube-epoxy composites for electrochemical sensing . Sens Actu-B , 113 : 617 – 622 .
  • Nicholson , R S . 1965 . Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics . Anal. Chem. , 37 : 1351 – 1355 .
  • Katz , E and Willner , I . 2003 . Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors . Electroanalysis , 15 : 913 – 947 .
  • Ajayan , P M . 1999 . Nanotubes from carbon . Chem. Rev. , 99 : 1787 – 1799 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.