7,228
Views
87
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, characterisation and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles

, , , &
Pages 54-71 | Received 11 Nov 2014, Accepted 24 Feb 2015, Published online: 02 Apr 2015

References

  • Matthews L, Kanwar RK, Zhou S, Punj V, Kanwar JR. Applications of nanomedicine in antibacterial medical therapeutics and diagnostics. Open Trop Med J. 2010;3:1–9.
  • Zhang L, Pornpattananangkul D, Hu MJ, Huang CM. Development of NPs for antimicrobial drug delivery. Curr Med Chem. 2010;17:585–594.
  • Tenover FC. Mechanism of antimicrobial resistance in bacteria. Am J Med. 2006;119:S3–S10.
  • Deotale V, Mendiratta DK, Raut U, Narang P. Inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Ind J Med Microbiol. 2010;28:124–126.
  • Wright GD. Antibiotic resistance in the environment: a link to the clinic. Curr Opin Microbiol. 2010;13:589–594.
  • Mandell BP, Tillotson G. Antimicrobial safety and tolerability: differences and dilemmas. Clin Infect Dis. 2001;32:S72–S79.
  • Reddy KM, Kevin F, Jason B, Denise GW, Cory H, Alex P. Selective toxicity of zinc oxide NPs to prokaryotic and eukaryotic systems. J Appl Phys Lett. 2007;90:1–3.
  • Mukherjee A, Sadiq M, Prathna TC, Chandrasekaran N. Antimicrobial activity of aluminium oxide NPs for potential clinical applications. In: Méndez-Vilas A, editor. Science against microbial pathogens communicating current research and technological advances. Badajoz, Spain: FORMATEX; 2011. p. 245–251.
  • Rai M, Yadav A, Gade A. Silver NPs as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.
  • Laura KA, Delina YL, Pedro JJA. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. J Water Res. 2006;40:3527–3532.
  • Mohsen J, Zahra B. Protein nanoparticle: a unique system as drug delivery vehicles. Afr J Biotechnol. 2008;7:4926–4934.
  • Sobha K, Surendranath K, Meena V, Jwala KT, Swetha N, Latha KSM. Emerging trends in nanobiotechnology. J Biotechnol Mol Biol Rev. 2010;5:001–012.
  • Nagarajan P, Rajagopalan V. Enhanced bioactivity of ZnO NPs – an antimicrobial study. J Sci Technol Adv Mater. 2008;9:035004.
  • Toshiaki O, Osamu Y, Yasuhiro I, Zenbe-e N. Antibacterial activity of ZnO powder with crystallographic orientation. J Mater Sci Med. 2008;19:1407–1412.
  • Zakaria ZA, Mat Desa A, Ramasamy K, Ahmat N, Mohamad AS, Israf DA, Sulaiman MR. Lack of antimicrobial activities of Dicranopteris linearis extracts and fractions. Afr J Microbiol Res. 2010;4:071–075.
  • Ariga K, Kawakami K, Ebara M, Kotsuchibashi Y, Ji Q, Hill JP. Bioinspired nanoarchitectonics as emerging drug delivery systems. New J Chem. 2014;38:5149–5163.
  • Chu KS, Hasan W, Rawal S, Walsh MD, Enlow EM, Luft JC, Bridges AS, Kuijer JL, Napier ME, Zamboni WC, DeSimone JM. Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomedicine. 2013;9:686–693.
  • Nakanishi W, Minamia K, Shrestha LK, Ji Q, Hill JP, Ariga K. Bioactive nanocarbon assemblies: nanoarchitectonics and applications. Nanotoday. 2014;9:378–394.
  • Wang X, Low XC, Hou W, Abdullah LN, Toh TB, Rashid MMA, Ho D, Chow EKH. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano. 2014;8:12151–12166.
  • Taratula O, Schumann C, Duong T, Taylor KL, Taratula O. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Nanoscale. 2015;7:3888–3902.
  • Feng G, Cheng Y, Wang SY, Hsu LC, Feliz Y, Borca-Tasciucb DA, Worobo RW, Moraru CI. Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp. Biofouling. 2014;30:1253–1268.
  • Kalyani G, Anil VG, Bo-Jung C, Yong-Chien L. Preparation and characterization of ZnO NPs coated paper and its antibacterial activity study. J Green Chem. 2006;8:1034–1041.
  • Matei A, Cernica I, Cadar O, Roman C, Schiopu V. Synthesis and characterization of ZnO – polymer nanocomposites. Int J Mater Form. 2008;1:767–770.
  • Gouvea CA, Wypych F, Moraes SG, Duran N, Nagata N, Peralta-Zamora P. Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere. 2000;40:433–440.
  • Lai Y, Meng M, Yu Y, Wang X, Ding T. Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Appl Catal B. 2011;105:335–345.
  • Li B, Wang Y. Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures. J Phys Chem C. 2010;114:890–896.
  • Pawinrat P, Mekasuwandumrong O, Panpranot J. Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catal Commun. 2009;10:1380–1385.
  • Cho S, Jang JW, Kim J, Lee JS, Choi W, Lee KH. Three dimensional type II ZnO/ZnSe heterostructures and their visible light photocatalytic activities. Langmuir. 2011;27:10243–10250.
  • Qin H, Li W, Xia Y, THe. Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO. Appl Mater Interfaces. 2011;3:3152–3156.
  • Li Y, Zhao X, Fan W. Structural, electronic, and optical properties of Ag-doped ZnO nanowires: first principles study. J Phys Chem C. 2011;115:3552–3557.
  • YeC, Bando Y, Shen G, Golberg D. Thickness-dependent photocatalytic performance of ZnO nanoplatelets. J Phys Chem B. 2006;110:15146–15151.
  • Murugesan V, Sivamurugan K, Ariga. Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J Mol Catal A. 2007;266:149–157.
  • Lu F, Cai WP, Zhang YG. ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance. Adv Funct Mater. 2008;18:1047–1056.
  • Ullah R, Dutta J. Photocatalytic degradation of organic dyes with manganese doped ZnO NPs. J Hazard Mater. 2008;156:194–200.
  • Akhavan O, Ghaderi E. Enhancement of antibacterial properties of Ag nanorods by electric field. Sci Technol Adv Mater. 2009;10:015003.
  • Hughes G, McLean NR. Zinc oxide tape: a useful dressing for the recalcitrant finger-tip and soft-tissue injury. Arch Emerg Med. 1988;5:223–227.
  • Hu H, Zhang W. Synthesis and properties of transition metals and rare-earth metals doped ZnS Nanoparticles. Opt Mater. 2006;28:536–550.
  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008;42:4591–4602.
  • Bauer AW, Kirby WMN, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45:493–496.
  • National Committee for Clinical Laboratory Standards (NCCLS). Performance standard for antimicrobial disc susceptibility test. Approved standard. Villanova (PA): NCCLS; 2006.
  • Chemical Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard – seventh edition. Wayne (PA): CLSI; 2006. (CLSI document M7-A7).
  • Chemical Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard – second edition. Wayne (PA): CLSI; 2008. (CLSI M38-A2).
  • Chemical Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard – third edition. Wayne (PA): CLSI; 2008. (CLSI document M 27-A3).
  • Cullity BD. Elements of X-ray diffraction. Reading (MA): Addison-Wesley; 1978.
  • Hernández A, Maya L, Sánchez-Mora E, Sánchez EM. Sol-Gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO-Fe2O3. J Sol Gel Sci Technol. 2007;42:71–78.
  • Das J, Evans IR, Khushalani D. Zinc glycolate: a precursor to ZnO. Inorg Chem. 2009;48:3508–3510.
  • Suwanboon S, Ratana T, Ratana WT. Effect of Al and Mn dopant on structural and optical properties of ZnO thin film prepared by sol-gel route. J Sci Technol. 2007;4:111–121.
  • Sharma D, Rajput J, Kaith BS, Kaur M, Sharma S. Synthesis of ZnO NPs and study of their antibacterial and antifungal properties. Thin Solid Films. 2010;519:1224–1229.
  • Rekha K, Nirmala M, Nair MG, Anukaliani A. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide NPs. Phys B. 2010;405:3180–3185.
  • Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009;22:235–242.
  • Gajbhiye MJ, Kesharwani A, Ingle A, Rai M. Fungus- mediated synthesis of silver NPs and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine. 2009;5:382–386.
  • Holt KB, Bard AJ. Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry. 2005;44:13214–13223.
  • Hranisavljevic J, Dimitrijevic N, Wurtz G, Wiederrecht G. Photoinduced charge separation reactions of J-aggregates coated on silver NPs. J Am Chem Soc. 2002;124:4536–4537.
  • Sikong L, Kongreong B, Kantachote D, Sutthisripok W. Photocatalytic activity and antibacterial behavior of Fe3+-doped TiO2/SnO2 NPs. Energy Res. 2010;1:120–125.
  • Li WR, Xie XB, Shi QS, Zeng HY, OU-Yang YS, Chen YB. Antibacterial activity and mechanism of silver NPs on Escherichia coli. J Appl Microbiol Biotechnol. 2009;85:1115–1122.
  • Kawahara K, Tsuruda K, Morishita M, Uchida M. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent Mater. 2000;16:452–455.
  • Sinha R, Karana R, Sinha A, Khare SK. Interaction and nanotoxic effect of ZnO and Ag NPs on mesophilic and halophilic bacterial cells. Bioresour Technol. 2011;102:1516–1520.
  • Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol. 2004;96:803–809.
  • Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 2001;3:643–646.
  • Brayner R, Ferrari-lliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006;6:866–870.
  • Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YWJ. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res. 2009;11:25–39.
  • Greenberg C, Steffek C. Bio-adhesion to thin films in relation to cleaning. Thin Solid Films. 2005;484:324–327.
  • Raghupati KR, Koodali RT, Manna AC. Size dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide NPs. Langmuir. 2011;27:4020–4028.
  • Jan T, Iqbal J, Ismail M, Zakaullah M, Naqvi SH, Badshah N. Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria. Int J Nanomed. 2013;8:3679–3687.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.