2,397
Views
14
CrossRef citations to date
0
Altmetric
Articles

Green synthesis and characterisation of antioxidant-tagged gold nanoparticle (X-GNP) and studies on its potent antimicrobial activity

, &
Pages 50-61 | Received 23 Mar 2015, Accepted 15 Nov 2017, Published online: 01 Dec 2017

Reference

  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Cancer. 2008;7:771–782.
  • Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther. 2003;3:655–663.
  • Gaiser BK, Hirn S, Kermanizadeh A, et al. Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicol Sci. 2013;131:537–547.
  • BarathManiKanth S, Kalishwaralal K, Sriram M, et al. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol. 2010;8:16–21.
  • Mohamed M, Veeranarayanan S, Poulose AC, et al. Type 1 ribotoxin-curcin conjugated biogenic gold nanoparticles for a multimodal therapeutic approach towards brain cancer. Biochim Biophys Acta. 2013;13:548–555.
  • Levchenko LA, Golovanova SA, Lariontseva NV, et al. Synthesis and study of gold nanoparticles stabilized by bioflavonoids. Russ Chem Bull. 2011;60:426–433.
  • Spivak MY, Bubnov RV, Yemets IM, et al. Gold nanoparticles – the theranostic challenge for PPPM: nanocardiology application. EPMA Journal. 2013;4:18–24.
  • Sona PS. Nanoparticulate drug delivery system for the treatment of diabetes. Dig J Nanomater Biostruct. 2010;5:411–418.
  • Singh C, Sharma V, Naik PKR, et al. A green biogenic approach for the synthesis of gold and silver nanoparticles using Zingiber officinale. Dig J Nanomater Biostruct. 2011;6:535–542.
  • Huang J, Li Q, Sun D. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnanonum camphora leaf. Nanotechnology. 2007;18:105104.
  • Vankar PS, Bajpai D. Preparation of gold nanoparticles from Mirabilis jalapa flowers. Indian J Biochem Biophys. 2010;47:157–160.
  • Mishra AN, Bhadauria S, Gaur MS, et al. Synthesis of gold nanoparticles by leaves of zero-calorie sweetener herb (Stevia rebaudiana) and their nanoscopic characterization by spectroscopy and microscopy. Int J Green Nanotechnol Phys Chem. 2010;1:P118–P124.
  • Jaiswal D, Rai PK, Watal G. Antidiabetic effect of Withania coagulans in experimental plants. Indian J Clin Biochem. 2009;24:88–93.
  • Kamel ZH, Daw I, Marzouk M. Effect of Cichorium endivia leaves on some biochemical parameters in streptozotocin-induced diabetic rats. Aus J Basic App Sci. 2011;5:387–396.
  • Pandhare RB, Sangameswaran B, Mohite PB, et al. Antidiabetic activity of aqueous leaves extract of Sesbania sesban (L) Merr. in streptozotocin-induced diabetic rats. Avicenna J Med Biotechnol. 2011;3:37–43.
  • Das H, Chakraborty U. Anti-hyperglycemic effect of Scoparia dulcis in streptozotocin-induced diabetes. Res J Pharm Biol Chem Sci. 2011;2:334–342.
  • Adiga S, Bairy KL, Meharban A, et al. Hypoglycemic effect of aqueous extract of Trichosanthes dioica in normal and diabetic rats. Int J Diab Dev Ctries. 2010;30:38–42.
  • Sivaraj A, Devi K, Palani S, et al. Anti-hyperglycemic and Anti-hyperlipidemic effect of combined plant extract of Cassia auriculata and Aegle marmelos in streptozotocin (STZ) induced diabetic albino rats. Int J Pharmatech Research. 2009;1:1010–1016.
  • Buckingham GR. Biological control of alligator weed, Alternanthera philoxeroides, the world's first aquatic weed success story. Castanea. 1996;61:232–243.
  • Julien MH, Skarratt B, Maywald GF. Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila. J Aquat Plant Manage. 1995;33:55–60.
  • Bhattacherjee A, Ghosh T, Sil R, et al. Isolation and characterization of methanol soluble fraction of Alternanthera philoxeroides (Mart.) – evaluation of their antioxidant, α-glucosidase inhibitory and antimicrobial activity in in vitro systems. Nat Prod Res. 2014;28:2199–2202.
  • Bhattacherjee A., Chakraborti AS. Inhibitory effect of Piper betle Linn. leaf extract on protein glycation – quantification and characterization of the antiglycation components. Ind J Biochem Biophys. 2013;50:529–536.
  • Turkevich J, Stevenson PL, Hillier J. Nucle-ation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55.
  • Bhattacherjee A, Chakraborti AS. Fructose-induced modifications of myoglobin: change of structure from met (Fe 3+) to oxy (Fe 2+) form. Int J Biol Macromol. 2011;48:202–209.
  • Bhattacherjee A, Dhara K, Chakraborti AS. Argpyrimidine-tagged rutin-encapsulated biocompatible (ethylene glycol dimers) nanoparticles: synthesis, characterization and evaluation for targeted drug delivery. Int J Pharm. 2016;509:507–517.
  • Bhattacherjee A, Chakraborti AS. Argpyrimidine-tagged rutin-encapsulated biocompatible (ethylene glycol dimers) nanoparticles: application for targeted drug delivery in experimental diabetes (Part 2). Int J Pharm. 2017;528:8–17.
  • Daisy P, Saipriya K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomed. 2012;7:1189–1202.
  • Ghosh T, Sarkar, P, Turner AP. A novel third generation uric acid biosensor using uricase electro-activated with ferrocene on a Nafion coated glassy carbon electrode. Bioelectrochemistry. 2015;102:1–9.
  • Bhattacherjee A, Dhara K, Chakraborti AS. Bimolecular interaction of argpyrimidine (a Maillard reaction product) in in vitro non-enzymatic protein glycation model and its potential role as an antiglycating agent. Int J Biol Macromol. 2017;102:1274–1285.
  • Ghosh T, Sarkar P. Isolation of a novel uric-acid-degrading microbe Comamonas sp. BT UA and rapid biosensing of uric acid from extracted uricase enzyme. J Biosci. 2014;39:805–819.
  • Mishra A, Kumari M, Pandey S, et al. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol. 2014;166:235–242.
  • Case CL, Jhonson TR. Laboratory experiments in microbiology. Menlo Park (CA): Benjamin Cummings Pub. Inc; 1984. p. 126–129.
  • Sathishkumar M, Sneha K, Yun YS. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol. 2010;101:7958–7965.
  • Sastry M, Ahmed A, Khan MI, et al. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci. 2003;85:162–170.
  • Fierascu RC, Ion RM, Dumitriu I. Noble metal nanoparticle synthesis in plant extracts. Optoelectron Adv Mater Rapid Commun. 2010;4:1297–1300.
  • Shankar SS, Ahmad A, Pasricha R, et al. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13:1822–1826.
  • Agnieszka SK, Dagmara M, Mulgorzata Z, et al. Characterization of gold nanoparticles for various medical application. Digest J Nanostruct Biomater. 2011;6:803–808.
  • He YQ, Liu SP, Kong L, et al. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim Acta A Mol Biomol Spectrosc. 2005;61:2861–2866.
  • Parida UK, Bindhani BK, Nayak P. Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World J Nano Sci Eng. 2011;1(4):93.
  • Elavazhagan T, Arunachalam KD. Memecylon edule leaf extract-mediated green synthesis of silver and gold nanoparticles. Int J Nanomed. 2011;6:1265–1278.