2,490
Views
17
CrossRef citations to date
0
Altmetric
Articles

Numerical and experimental studies of heat and flow characteristics in a laminar pipe flow of nanofluid

, , , &
Pages 82-94 | Received 05 Jun 2017, Accepted 02 Dec 2017, Published online: 26 Dec 2017

Reference

  • Chen YJ, Wang PY, Liu ZH. Numerical study of natural convection characteristics of nanofluids in an enclosure using multiphase model. Heat Mass Transf. 2016;52(11):2471–2484.
  • Ellahi R, Hassan M, Zeeshan A. A study of heat transfer in power law nanofluid. Therm Sci. 2016;20(6):2015–2026.
  • Chol SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed. 1995;231:99–106.
  • Wang X, Xu XS, Choi SU. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf. 1999;13(4):474–480.
  • Hasan MI. Investigation of flow and heat transfer characteristics in micro pin fin heat sink with nanofluid. Appl Therm Eng. 2014;63(2):598–607.
  • Lavasani AM, Bayat H. Numerical study of pressure drop and heat transfer from circular and cam-shaped tube bank in cross-flow of nanofluid. Energy Convers Manag. 2016;129:319–328.
  • Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47(24):5181–5188.
  • Yang Y, Zhang ZG, Grulke EA, et al. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf. 2005;48(6):1107–1116.
  • Vijayakumar M, Navaneethakrishnan P, Kumaresan G. Thermal characteristics studies on sintered wick heat pipe using CuO and Al2O3 nanofluids. Exp Therm Fluid Sci. 2016;79:25–35.
  • Popa CV, Nguyen CT, Gherasim I. New specific heat data for Al2O3 and CuO nanoparticles in suspension in water and Ethylene Glycol. Int J Therm Sci. 2017;111:108–115.
  • Esmaeilzadeh E, Almohammadi H, Nokhosteen A, et al. Study on heat transfer and friction factor characteristics of γ-Al 2 O 3/water through circular tube with twisted tape inserts with different thicknesses, Int J Therm Sci. 2014;82:72–83.
  • Lin Y, Li B, Zheng L, et al. Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature. Powder Technol. 2016;301:379–386.
  • Lin Y, Li B, Zheng L, et al. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49(1):240–250.
  • Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf. 2006;33(4):529–535.
  • Fotukian SM, Esfahany MN. Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int Commun Heat Mass Transf. 2010;37(2):214–219.
  • Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11(2):151–170.
  • Xuan YM, Hu WF, Li Q. Simulations of Structure and Thermal Conductivity of Nanofluids. J Eng Thermophys. 2002;23(2): 206–208.
  • Sajadi AR, Kazemi MH. Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube. Int Commun Heat Mass Transf. 2011;38(10): 1474–1478.
  • Zhang J, Diao Y, Zhao Y, et al. An experimental investigation of heat transfer enhancement in minichannel: combination of nanofluid and micro fin structure techniques. Exp Therm Fluid Sci. 2017;81:21–32.
  • Zhang J, Diao Y, Zhao Y, et al. Experimental study of TiO2–water nanofluid flow and heat transfer characteristics in a multiport minichannel flat tube. Int J Heat Mass Transf. 2014;79:628–638.
  • Mahdavi M, Sharifpur M, Meyer JP. Simulation study of convective and hydrodynamic turbulent nanofluids by turbulence models. Int J Therm Sci. 2016;110:36–51.
  • Lin JZ, Xia Y, Ku XK. Friction factor and heat transfer of nanofluids containing cylindrical nanoparticles in laminar pipe flow. J Appl Phys. 2014;116:133513.
  • Lin JZ, Xia Y, Ku XK. Pressure drop and heat transfer of nanofluid in turbulent pipe flow considering particle coagulation and breakage. J Heat Transf. 2014;136(11):111701.1–111701.9.
  • Lin JZ, Xia Y, Ku XK. Flow and heat transfer characteristics of nanofluids containing rod-like particles in a turbulent pipe flow. Int J Heat Mass Transf. 2016;93:57–66.
  • Sommerfeld M. Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. Int J Multiph Flow. 2001;27(10):1829–1858.
  • Talbot L, Cheng RK, Chefer RW, et al. Thermophoresis of particles in a heated boundary layer. J Fluid Mech. 1980;101(4):737–758.
  • He YR, Han JC. Investigation of flow and convective heat transfer of Al2O3/H2O nanofluids in tube with numerical simulation. The 15th national conference on composite materials academic (part ii). Harbin Institute of Technology; Harbin. 2008.