2,001
Views
10
CrossRef citations to date
0
Altmetric
Articles

Temperature dependence on the mass susceptibility and mass magnetization of superparamagnetic Mn–Zn–ferrite nanoparticles as contrast agents for magnetic imaging of oil and gas reservoirs

, , , , , & show all
Pages 107-118 | Received 29 Jul 2017, Accepted 08 Jan 2018, Published online: 29 Jan 2018

References

  • OPEC. 2014 World Oil Outlook. Vienna: OPEC; 2014.
  • Nicot JP. Scanlon BR. Water use for shale-gas production in Texas, U.S.. Environ Sci Technol. 2012;46:3580–3586.
  • Dammel JA, Bielicki JM, Pollak MF, et al. A tale of two technologies: hydraulic fracturing and geologic carbon sequestration. Environ Sci Technol. 2011;45:5075–5076.
  • Sahimi M. Flow and transport in porous media and fractured rock: from classical methods to modern approaches second, revised, and Enlarged edition. Weinheim, Germany: Wiley-VCH; 2012.
  • Nguyen PD, Fulton DD, inventor. Halliburton Energy Services, Inc., assignee. Electroconductive proppant compositions and related methods. United States patent 7,073,581. 2006 Jul 11.
  • McDaniel RR, McCarthy SM, Smith M, inventor. Methods and compositions for determination of fracture geometry in subterranean formations; Momentive Specialty Chemicals Inc., assignee. US Patent, 8129318, 2012 Mar 6.
  • Maguire-Boyle SJ, Garner DJ, Heimann JE, et al. Automated method for determining the flow of surface functionalized nanoparticles through a hydraulically fractured mineral formation using plasmonic silver nanoparticles. Env Sci Process Impact. 2014;16:220–231.
  • Barron AR, Tour JM, Busnaina AA, et al. Big things in small packages. Oilfield Rev. 2010;3:38–49.
  • Cocuzza M, Pirri C, Rocca V, et al. Current and future nanotech applications in the oil industry. Am J Appl Sci. 2012;9:784–793.
  • Byerlee JD, Johnston MJS. A magnetic method for determining the geometry of hydraulic fractures. Pure Appl Geophys. 1976;114:425–433.
  • Zawadzki J, Bogacki J. Smart magnetic markers use in hydraulic fracturing. Chemosphere. 2016;162:23–30.
  • Khalil M, Jan BM, Tong CW, et al. Advanced nanomaterials in oil and gas industry: design, application and challenges. Appl Energy. 2017;191:287–310.
  • Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Ad Drug Delivery Rev. 2008;60:1252–1265.
  • Roca AG, Veintemillas-Verdaguer S, Port M, et al. Effect of nanoparticle and aggregate size on the relaxometric properties of mr contrast agents based on high quality magnetite nanoparticles. J Phys Chem B. 2009;113:7033–7039.
  • Morrow L, Potter DK, Barron AR. Detection of magnetic nanoparticles against proppant and shale reservoir rocks. J Exp Nanosci. 2015;10:1028–1041.
  • Aderibigbe A, Cheng K, Heidari Z, et al. Application of magnetic nanoparticles mixed with propping agents in enhancing near-wellbore fracture detection. J Petrol Sci Eng. 2016;141:133–143.
  • Kanji MY, Kosynkin DV. Proc. SPIE 9467, Micro- and Nanotechnology Sensors, Systems, and Applications VII, 94671D. 2015. DOI:10.1117/12.2179249.
  • Ali A, Potter DK. Model templates for quantifying permeability controlling paramagnetic clay minerals at in situ reservoir temperatures. International Symposium of the Society of Core Analysts. Austin, TX, USA: Paper SCA2011-47, 6 pages; 2011.
  • Ali A, Potter DK. Temperature dependence of the magnetic properties of reservoir rocks and minerals and implications for in situ borehole predictions of petrophysical parameters. Geophysics. 2012;77:WA211–WA221.
  • Kargbo DM, Wilhelm RG, Campbell DJ. Natural gas plays in the Marcellus shale: challenges and potential opportunities. Environ Sci Technol. 2010;44:5679–5684.
  • Jarvie DM, Hill RJ, Ruble TE, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin. 2007;91:475–499.
  • Rath S, Anand RP, Das KK, et al. Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn–Zn ferrite. J Appl Phys. 2002;91:2211.
  • Jayadevan B, Chinnasamy CN, Shinoda, K, et al. Mn–Zn ferrite with higher magnetization for temperature sensitive magnetic fluid. J Appl Phys. 2003;93:8450.
  • Auzans E, Zins D, Blums E, et al. Synthesis and properties of Mn-Zn ferrite ferrofluids. J Mater Sci. 1999;34:1253–1260.
  • Auzans E, Zins D, Maiorov MM, et al. Properties of Mn–Zn ferrite nanoparticles for aqueous ferrofluids. Magn Girdrodin. 1999;36:78–86.
  • Arulmurugan R, Vaidyanathan G, Sendhilnathan S, et al. Decoupled superconductivity in the four- and five-layered ferromagnet–superconductor nanostructures and control devices. J Magn Magn Mater. 2006;298:83–88.
  • Arulmurugan R, Vaidyanathan G, Sendhilnathan S, et al. Preparation and properties of temperature-sensitive magnetic fluid having Co0.5Zn0.5Fe2O4 and Mn0.5Zn0.5Fe2O4 nanoparticles. Physica B. 2005;368:223–230.
  • Rozman M, Drofenik M. Hydrothermal synthesis of manganese zinc ferrites. J Am Ceram Soc. 1995;78:2449–2455.
  • Xuan Y, Li Q, Yang G. Synthesis and magnetic properties of Mn–Zn ferrite nanoparticles. J Magn Magn Mater. 2007;312:464–469.
  • Thakur A, Singh M. Preparation and characterization of nanosize Mn0.4Zn0.6 Fe2O4 ferrite by citrate precursor method. Ceram Int. 2003;29:505–511.
  • Jang J-T, Nah H, Lee HJ-H, et al. Critical Enhancements of MRI Contrast and Hyperthermic Effects by Dopant-Controlled Magnetic Nanoparticles. Angew Chem. 2009;121:1260.
  • Orbaek W, Morrow L, Maguire-Boyle SJ, et al. Reagent control over the composition of mixed metal oxide nanoparticles. J Exp Nanosci. 2015;10:324–349.
  • Morrow L, Barron AR. Issues affecting the synthetic scalability of ternary metal ferrite nanoparticles. J Nanoparticles. 2015;2015:105862. DOI:10.1155/2015/105862.
  • Arulmurugan R, Jeyadevan B, Vaidyanathan G, et al. Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation. J Magn Magn Mater. 2005;288:470–477.
  • Lima E Jr, Brandl AL, Aerlaro AD, et al. Spin disorder and magnetic anisotropy in Fe3O4 nanoparticles. J Appl Phys. 2006;99:083908.
  • Rath C, Sahu KK, An S, et al. Preparation and characterization of nanosize Mn–Zn ferrite. J Magn Magn Mater. 1999;202:77–84.
  • Zhou ZH, Xue JM, Wang J, et al. NiFe2O4 nanoparticles formed in situ in silica matrix by mechanical activation. J Appl Phys. 2002;91:6015.
  • Deraz NM, Alarifi A. Microstructure and magnetic studies of zinc ferrite nano- particles. Int J Electrochem Sci. 2012;7:6501–6511.
  • Shim JH, Lee S, Park JH, et al. Coexistence of ferrimagnetic and antiferromagnetic ordering in Fe-inverted zinc ferrite investigated by NMR. Phys Rev B. 2006;73:064404.