1,823
Views
3
CrossRef citations to date
0
Altmetric
Articles

Dispersion and sedimentation of titanium dioxide nanoparticles in freshwater algae and daphnia aquatic culture media in the presence of arsenate

, ORCID Icon &
Pages 119-129 | Received 01 Dec 2017, Accepted 03 Mar 2018, Published online: 09 Apr 2018

References

  • Luo Z, Wang Z, Li Q, et al. Spatial distribution, electron microscopy analysis of titanium and its correlation to heavy metals: occurrence and sources of titanium nanomaterials in surface sediments from Xiamen Bay, China. J Environ Monit. 2011;13:1046–1052.
  • Gao Y, Luo ZX, He NP, et al. Metallic nanoparticle production and consumption in China between 2000 and 2010 and associative aquatic environmental risk assessment. ‎J Nanopart Res. 2013;15:1681–1689.
  • Brandi G, Nobili E, Di Girolamo S, et al. Nanotechnology-related environment, health, and safety research. Environ Health Perspect. 2009;117:A433–A438.
  • Gottschalk F, Kost E, Nowack B. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem. 2013;32:1278–1287.
  • Nazarenko Y, Zhen HJ, Han T, et al. Potential for inhalation exposure to engineered nanoparticles from nanotechnology-based cosmetic powders. Environ Health Perspect. 2012;120:885–892.
  • Wallis LK, Diamond SA, Ma HB, et al. Chronic TiO2 nanoparticle exposure to a benthic organism, Hyalella azteca: impact of solar UV radiation and material surface coatings on toxicity. ‎Sci Total Environ. 2014;499:356–362.
  • Starnes DL, Unrine JM, Starnes CP, et al. Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans. Environ Pollut. 2015;196:239–246.
  • Zhang SJ, Jiang YL, Chen CS, et al. Aggregation, dissolution, and stability of quantum dots in marine environments: importance of extracellular polymeric substances. Environ Sci Technol. 2012;46:8764–8772.
  • Ma XM, Geiser-Lee J, Deng Y, et al. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. ‎Sci Total Environ. 2010;408:3053–3061.
  • Du WC, Sun YY, Ji R, et al. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit. 2011;13:822–828.
  • Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46:2242–2250.
  • Ji ZX, Jin X, George S, et al. Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol. 2010;44:7309–7314.
  • Aravantinou AF, Tsarpali V, Dailianis S, et al. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicol Environ Saf. 2015;114:109–116.
  • Golmoraj VE, Khoshayand MR, Amini M, et al. The surface chemistry and stability of gold nanoparticles prepared using methanol extract of Eucalyptus camaldulensis. J Exp Nanosci. 2011;6:200–208.
  • Keller AA, Wang HT, Zhou DX, et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol. 2010;44:1962–1967.
  • Hartmann NB, Von der Kammer F, Hofmann T, et al. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology. 2010;269:190–197.
  • Rashdan S, Bououdina M, Al-Saie A. Effect of the preparation route, PEG and annealing on the phase stability of Fe3O4 nanoparticles and their magnetic properties. J Exp Nanosci. 2013;8:210–222.
  • Seitz F, Rosenfeldt RR, Schneider S, et al. Size-, surface- and crystalline structure composition-related effects of titanium dioxide nanoparticles during their aquatic life cycle. ‎Sci Total Environ. 2014;493:891–897.
  • Quik JTK, Vonk JA, Hansen SF, et al. How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ Int. 2011;37:1068–1077.
  • Brunelli A, Pojana G, Callegaro S, et al. Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters. J Nanopart Res. 2013;15:1684–1693.
  • Lee WM, An YJ. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere. 2013;91:536–544.
  • Rodea-Palomares I, Gonzalo S, Santiago-Morales J, et al. An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquatic Toxicology. 2012;122:133–143.
  • Lin DH, Ji J, Long ZF, et al. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water Res. 2012;46:4477–4487.
  • Zhu XS, Chang Y, Chen YS. Uptake and depuration of nanoscale titanium dioxide particles (nTiO(2)) by Daphnia and zebrafish. Abstr Pap Am Chem S. 2009;237.
  • Bundschuh M, Seitz F, Rosenfeldt RR, et al. Titanium dioxide nanoparticles increase sensitivity in the next generation of the Water Flea Daphnia magna. Plos One. 2012;7:1–7.
  • Wang ZH, Luo ZX, Yan CZ, et al. Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes. J Hazard Mater. 2014;276:393–399.
  • Yang WW, Wang Y, Huang B, et al. TiO2 nanoparticles act as a carrier of Cd bioaccumulation in the Ciliate Tetrahymena thermophila. Environ Sci Technol. 2014;48:7568–7575.
  • Bhushan B, Hoondal GS. Isolation, purification and properties of a thermostable chitinase from an alkalophilic Bacillus sp. BG-11. Biotechnol Lett. 1998;20:157–159.
  • Tan C, Fan WH, Wang WX. Role of titanium dioxide nanoparticles in the elevated uptake and retention of Cadmium and Zinc in Daphnia magna. Environ Sci Technol. 2012;46:469–476.
  • Van Koetsem F, Xiao Y, Luo Z, et al. Impact of water composition on association of Ag and CeO nanoparticles with aquatic macrophyte Elodea canadensis. Environ Sci Pollut Res. 2015;23:5277–5287.
  • Li S, Wallis LK, Ma H, et al. Phototoxicity of TiO(2) nanoparticles to a freshwater benthic amphipod: are benthic systems at risk? The ‎Sci Total Environ. 2014;466-467:800–808.
  • Stebounova LV, Guio E, Grassian VH. Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res. 2011;13:233–244.
  • Egerton T, Tooley I. Physical characterization of titanium dioxide nanoparticles. Int J Cosmet Sci. 2014;36:195–206.
  • Petosa AR, Jaisi DP, Quevedo IR, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol. 2010;44:6532–6549.
  • Murdock RC, Braydich-Stolle L, Schrand AM, et al. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008;101:239–253.
  • Praetorius A, Labille J, Scheringer M, et al. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions. Environ Sci Technol. 2014;48:10690–10698.
  • Shih YH, Liu WS, Su YF. Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions. Environ Toxicol Chem. 2012;31:1693–1698.
  • Zhu M, Wang HT, Keller AA, et al. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. ‎Sci Total Environ. 2014;487:375–380.
  • Jiang CL, Sequaris JM, Vereecken H, et al. Effects of inorganic and organic anions on the stability of illite and quartz soil colloids in Na-, Ca- and mixed Na-Ca systems. Colloid Surface A. 2012;415:134–141.
  • Rosenfeldt RR, Seitz F, Schulz R, et al. Heavy metal uptake and toxicity in the presence of titanium dioxide nanoparticles: a factorial approach using daphnia magna. Environ Sci Technol. 2014;48:6965–6972.
  • Li M, Luo Z, Yan Y, et al. Arsenate accumulation, distribution, and toxicity associated with titanium dioxide nanoparticles in daphnia magna. Environ Sci Technol. 2016;50:9636–9643.