1,341
Views
2
CrossRef citations to date
0
Altmetric
Articles

Ultrasensitive electrocatalytic detection of COX-2 rs20417: relying on 3D interconnected architecture of Pt-LSSUs@PAA nanostructures for sensor interface modification

&
Pages 1-12 | Received 05 Jul 2018, Accepted 09 Dec 2018, Published online: 31 Dec 2018

References

  • Ornelas A, Zacharias-Millward N, Menter DG, et al. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev. 2017;36:289–303.
  • Patrono C. Aspirin resistance: definition, mechanisms and clinical read-outs. J Thromb Haemost. 2003;1:1710–1713.
  • Wang H, Sun X, Dong W, et al. Association of GPIa and COX‐2 gene polymorphism with aspirin resistance. J Clin Lab Anal. 2017;32:e22331.
  • Yi X, Cheng W, Lin J, et al. Interaction between COX-1 and COX-2 variants associated with aspirin resistance in chinese stroke patients. J Stroke Cerebrovasc Dis. 2016;25:2136–2145.
  • Song J, Jing Z, Hu W, et al. α-Linolenic acid inhibits receptor activator of NF-κB ligand induced (RANKL-Induced) Osteoclastogenesis and prevents inflammatory bone loss via downregulation of nuclear factor-KappaB-inducible nitric oxide synthases (NF-κB-iNOS) signaling pathways. Med Sci Monit. 2017;23:5056–5069.
  • Xu B, Shanmugalingam R, Chau K, et al. The effect of acetyl salicylic acid (Aspirin) on trophoblast-endothelial interaction in vitro. J Reprod Immunol. 2017;124:54–61.
  • Liu F, Melton JT, Bi Y. Mitochondrial genomes of the green macroalga Ulva pertusa (Ulvophyceae, Chlorophyta): novel insights into the evolution of mitogenomes in the Ulvophyceae. J Phycol. 2017;53:1010–1019.
  • Hong N, Cheng L, Wei B, et al. An electrochemical DNA sensor without electrode pre-modification. Biosens Bioelectron.. 2017;91:110–114.
  • Hu C, Kalsi S, Zeimpekis I, et al. Ultra-fast electronic detection of antimicrobial resistance genes using isothermal amplification and thin film transistor sensors. Biosens Bioelectron. 2017;96:281–287.
  • Xia BY, Wu HB, Li N, et al. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew Chem Int Ed Engl. 2015;54:3797–3801.
  • Xu GY, Wang B, Zhu JY, et al. Morphological and Interfacial Control of Platinum Nanostructures for Electrocatalytic Oxygen Reduction. ACS Catal. 2016;6:1–10.
  • Liu L, Gao Y, Liu H, et al. Electrochemical-chemical-chemical redox cycling triggered by thiocholine and hydroquinone with ferrocenecarboxylic acid as the redox mediator. Electrochim Acta. 2014;139:323–330.
  • Xia N, Zhang Y, Wei X, et al. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling. Anal Chim Acta. 2015;878:95–101.
  • Han GC. Electrochemical determination of protease with improving sensitivity by electrochemical-chemical-chemical redox cycling. Int J Electrochem Sci. 2016;11:8646–8653.
  • Tee-Ngam P, Siangproh W, Tuantranont A, et al. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal Chem. 2017;89:5428–5434.
  • Zhou YG, Wan Y, Sage AT, et al. Effect of microelectrode structure on electrocatalysis at nucleic acid-modified sensors. Langmuir 2014;30:14322–14328.
  • Das J, Ivanov I, Montermini L, et al. An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat Chem. 2015;7:569–575.
  • Ngassa GB, Tonlé IK, Ngameni E. Square wave voltammetric detection by direct electroreduction of paranitrophenol (PNP) using an organosmectite film-modified glassy carbon electrode. Talanta 2016;147:547–555.
  • Oja SM, Guerrette JP, David MR, et al. Fluorescence-enabled electrochemical microscopy with dihydroresorufin as a fluorogenic indicator. Anal Chem. 2014;86:6040–6048.
  • Paleček E, Ostatná V, Černocká H, et al. Electrocatalytic monitoring of metal binding and mutation-induced conformational changes in p53 at picomole level. J Am Chem Soc. 2011;133:7190–7196.
  • Du M, Yang T, Ma S, et al. Ionic liquid-functionalized graphene as modifier for electrochemical and electrocatalytic improvement: comparison of different carbon electrodes. Anal Chim Acta. 2011;690:169–174.
  • Fu G, Wu K, Lin J, et al. One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J Phys Chem C. 2013;117:9826–9834.
  • Li F-M, Gao X-Q, Li S-N, et al. Thermal decomposition synthesis of functionalized PdPt alloy nanodendrites with high selectivity for oxygen reduction reaction. NPG Asia Mater. 2015;7:e219.
  • Fu G, Jiang X, Gong M, Chen Y, Tang Y, Lin J, Lu T. Highly branched platinum nanolance assemblies by polyallylamine functionalization as superior active, stable, and alcohol-tolerant oxygen reduction electrocatalysts. Nanoscale. 2014;6:8226–8234.