1,486
Views
9
CrossRef citations to date
0
Altmetric
Articles

Construction and characterization of Ag/AgI/Ag3BiO3 heterojunction and its photocatalytic mechanism

ORCID Icon, , , &
Pages 56-68 | Received 22 Apr 2019, Accepted 23 Jun 2019, Published online: 03 Jul 2019

References

  • Arabzadeh A, Salimi A. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation. J Colloid Interface Sci. 2016;479:43–54.
  • Chao J, Liu G, Zu L, et al. Preparation of Ag@Ag3PO4@ZnO ternary heterostructures for photocatalytic studies. J Colloid Interface Sci. 2015;453:36–41.
  • Kun R, Balázs M, Dékány I, et al. Photooxidation of organic dye molecules on TiO2 and zinc–aluminum layered double hydroxide ultrathin multilayers. Colloid Surface A: Physicochem Eng Aspects. 2005;265:155–162.
  • Yu Z, Kumar R, Chu Y, et al. Photocatalytic decomposition of RhB by newly designed and highly effective CF@ZnO/CdS hierarchical heterostructures. ACS Sustain Chem Eng. 2018;6:155–164.
  • Chen S, Hu Y, Ji L, et al. Preparation and characterization of direct Z-scheme photocatalyst Bi2O3/NaNbO3 and its reaction mechanism. Appl Surf Sci. 2014;292:357–366.
  • Cao S, Zhu Y. Hierarchically nanostructured r-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment. J Phys Chem C. 2008;112:6253–6257.
  • Cao J, Xu B, Luo B, et al. Preparation, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2. Appl Surf Sci. 2011;257:7083–7089.
  • Liang W, Tang G, Zhang H, et al. Core–shell structured AgBr incorporated g-C3N4 nanocomposites with enhanced photocatalytic activity and stability. Mater Technol. 2017;32:675–685.
  • Ghanbari M, Soofivand F, Salavati-Niasar M. Simple synthesis and characterization of Ag2CdI4/AgI nanocomposite as an effective photocatalyst by co-precipitation method. J Mol Liq. 2016;223:21–28.
  • Shinger MI, Idris AM, Devaramani S, et al. In situ fabrication of graphene-based Ag3PO4@AgBr composite with enhanced photocatalytic activity under simulated sunlight. J Environ Chem Eng. 2017;5:1526–1535.
  • Xu F, Xiao W, Cheng B, et al. Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity. Int J Hydrogen Energy. 2014;39:15394–15402.
  • Song Z, He Y. Novel AgCl/Ag/AgFeO2 Z-scheme heterostructure photocatalyst with enhanced photocatalytic and stability under visible light. Appl Surf Sci. 2017;420:911–918.
  • Zhang W, Zhou L, Shi J, et al. Fabrication of novel visible-light-driven AgI/g-C3N4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation. J Colloid Interface Sci. 2017;496:167–176.
  • Guo F, Shi W, Wang H, et al. Study on highly enhanced photocatalytic tetracycline degradation of type II AgI/CuBi2O4 and Z-scheme AgBr/CuBi2O4 heterojunction photocatalysts. J Hazard Mater. 2018;349:111–118.
  • Fang H, Gao X, Yu J, et al. Preparation of the all-solid-state Z-scheme WO3/Ag/AgCl film on glass accelerating the photodegradation of pollutants under visible light. J Mater Sci. 2019;54:286–301.
  • Reddy D, Choi J, Lee S, et al. Green synthesis of AgI nanoparticle-functionalized reduced graphene oxide aerogels with enhanced catalytic performance and facile recycling. RSC Adv. 2015;5:67394–67404.
  • Dong F, Li Q, Zhou Y, et al. In situ decoration of plasmonic Ag nanocrystals on the surface of (BiO)2CO3 hierarchical microspheres for enhanced visible light photocatalysis. RSC Dalton Trans. 2014;43:9468–9480.
  • Du X, Wan J, Jia J, et al. Photocatalytic degradation of RhB over highly visible-light active Ag3PO4-Bi2MoO6 heterojunction using H2O2 electron capturer. Mater Design. 2017;119:113–123.
  • Kim TW, Choi KS. Nanoporous BiVO4 photoanodes with Dual-Layer oxygen evolution catalysts for solar water splitting. Science. 2014;343:990–994.
  • Li X, Huang R, Hu Y, et al. A templated method to Bi2WO6 hollow microspheres and their conversion to double-shell Bi2O3/Bi2WO6 hollow microspheres with improved photocatalytic performance. ACS Inorg Chem. 2012;51:6245–6250.
  • Li J, Yuan H, Zhu Z, et al. Improved photoelectrochemical performance of Z-schemeg-C3N4/Bi2O3/BiPO4 heterostructure and degradation property. Appl Surf Sci. 2016;385:34–41.
  • Gong JY, Lee CS Kim EJ, et al. Self-generation of reactive oxygen species on crystalline AgBiO3 for the oxidative remediation of organic pollutants. ACS Appl Mater Interfaces. 2017;9:28426–28432.
  • Rurtz M, Jansen M. Ag3BiO3, und Ag5BiO4, die ersten Siiberoxobismutate(III). Z anorg allg Chem. 1993;619:1446–1454.
  • Li C, Zhang A, Zhang L, et al. Enhanced photocatalytic activity and characterization of magnetic Ag/BiOI/ZnFe2O4 composites for Hg0 removal under fluorescent light irradiation. Appl Surf Sci. 2018;433:914–926.
  • Ge M, Cao C, Li S, et al. In situ plasmonic Ag nanoparticles anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. RSC Nanoscale. 2016;8:5226–5234.
  • Sellappan R, Nielsen MG, Posada FG, et al. Effects of plasmon excitation on photocatalytic activity of Ag/TiO2 and Au/TiO2 nanocomposites. J Catal. 2013;307:214–221.
  • Liu S, Yu J, Wang T, et al. A multifunctional Ag/PAOCG reusable substrate for p-nitrophenol reduction and SERS applications. J Mater Sci. 2017;52:13748–13763.
  • Song B, Tang Q, Wu W, et al. A novel in-situ synthesis and enhanced photocatalytic performance of Z-scheme Ag/AgI/AgBr/sulfonated polystyrene heterostructure photocatalyst. J Inorg Organomet P. 2018;28:805–811.
  • Chen F, Yang Q, Sun J, et al. Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradiation: mineralization efficiency and mechanism. ACS Appl Mater Interfaces. 2016;8:32887–32900.
  • Zhang A, Zhang L, Chen X, et al. Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light. Appl Surf Sci. 2017;392:1107–1116.
  • Cui M, Yu J, Lin H, et al. In-situ preparation of Z-scheme AgI/Bi5O7I hybrid and its excellent photocatalytic activity. Appl Surf Sci. 2016;387:912–920.
  • Yang N, Lv X, Zhong S, et al. Preparation of Z-scheme AgI/Bi5O7I plate with high visible light photocatalytic performance by phase transition and morphological transformation of BiOI microspheres at room temperature. RSC Dalton Trans. 2018;47:11420–11428.
  • Dai K, Lu L, Liang C, et al. A high efficient graphitic-C3N4/BiOI/graphene oxide ternary nanocomposite heterostructured photocatalyst with graphene oxide as electron transport buffer material. Dalton T. 2015;44:7903–7910.
  • Islam M, Reddy D, Ma R, et al. Reduced-graphene-oxide-wrapped BiOI-AgI heterostructured nanocomposite as a high-performance photocatalyst for dye degradation under solar light irradiation. Solid State Sci. 2016;61:32–39.
  • Xu H, Yan J, Xu Y, et al. Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl Catal B-Environ. 2013;129:182–193.
  • Wang P, Huang B, Zhang Q, et al. Highly efficient visible light plasmonic photocatalyst Ag@Ag(Br,I). Chem Eur J. 2010;16:10042–10047.
  • Reddy D, Ma R. Choi M, et al. Reduced graphene oxide wrapped ZnS–Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants. Appl Surf Sci. 2015;324:725–735.
  • Li T, Lu G, Hu X, et al. Ag/Ag3PO4/BiPO4 nanocomposites with high photocatalytic degradation activity for 2,4-dichlorophenol. Mater Lett. 2017;188:392–395.
  • Wang Z, Zhang J, Lv J, et al. Plasmonic Ag2MoO4/AgBr/Ag composite: Excellent photocatalytic performance and possible photocatalytic mechanism. Appl Surf Sci. 2017;396:791–798.
  • Liu L, Qi Y, Yang J, et al. An AgI@g-C3N4 hybrid core@shell structure: Stable and enhanced photocatalytic degradation. Appl Surf Sci. 2015;358:319–327.
  • Di L, Yang H, Xian T, et al. Photocatalytic and photo-fenton catalytic degradation activities of Z-scheme Ag2S/BiFeO3 heterojunction composites under visible-light irradiation. Nanomaterials-Basel. 2019;9:399.
  • Kumar S, Khanchandani S, Thirumal M, et al. Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures. ACS Appl Mater Interfaces. 2014;6:13221–13233.
  • Zhang T, Oyama T, Horikoshi S, et al. Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight. Sol Energy Mat Sol C. 2002;73:287–303.
  • Choi J, Reddy D, Kim T. Enhanced photocatalytic activity and anti-photocorrosion of AgI nanostructures by coupling with graphene-analogue boron nitride nanosheets. Ceram Int. 2015;41:13793–13803.
  • Reddy D, Lee S, Choi J, et al. Green synthesis of AgI-reduced graphene oxide nanocomposites:Toward enhanced visible-light photocatalytic activity for organicdye removal. Appl Surf Sci. 2015;341:175–184.
  • Yangjeh AH, Akhundi A. Novel ternary g-C3N4/Fe3O4/Ag2CrO4 nanocomposites: magneticallyseparable and visible-light-driven photocatalysts for degradation of water pollutants. J Mol Catal A-Chem. 2016;415:122–130.
  • Zhu B, Xia P, Li Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl Surf Sci. 2017;391:175–183.
  • Islam M, Reddy A, Choi J, et al. Surface oxygen vacancy assisted electron transfer and shuttling for enhanced photocatalytic activity of a Z-scheme CeO2–AgI nanocomposite. RSC Adv. 2016;6:19341–19350.
  • Reddy D, Choi J, Lee S, et al. Controlled synthesis of heterostructured Ag@AgI/ZnS microspheres with enhanced photocatalytic activity and selective separation of methylene blue from mixture dyes. J Taiwan Inst Chem E. 2016;66:200–209.
  • Lee S, Reddy A, Kim T. Well-wrapped reduced graphene oxide nanosheets on Nb3O7(OH) nanostructures as good electron collectors and transporters for efficient photocatalytic degradation of rhodamine B and phenol. RSC Adv. 2016;6:37180–37188.
  • Liu H, Cao W, Su Y, et al. Synthesis, characterization and photocatalytic performance of novel visible-light-induced Ag/BiOI. Appl Catal B-Environ. 2012;111-112:271–279.