1,243
Views
10
CrossRef citations to date
0
Altmetric
Article

Aqueous phosphorous adsorption onto SnO2 and WO3 nanoparticles in batch mode: kinetic, isotherm and thermodynamic study

, &
Pages 242-265 | Received 12 Mar 2020, Accepted 12 May 2020, Published online: 04 Jun 2020

References

  • Chen N, Feng C, Yang J, et al. Preparation and characterization of ferric-impregnated granular ceramics (FGCs) for phosphorus removal from aqueous solution. Clean Tech Environ Policy. 2013;15(2):375–382.
  • Babarinde A, Onyiaocha GO. Equilibrium sorption of divalent metal ions onto groundnut (Arachis hypogaea) shell: kinetics, isotherm and thermodynamics. Chem Int. 2016;2(3):37–46.
  • De-Bashan LE, Bashan Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003).Water Res. 2004;38(19):4222–4246.
  • Babarinde A, Ogundipe K, Sangosanya KT, et al. Comparative study on the biosorption of Pb (II), Cd (II) and Zn (II) using Lemon grass (Cymbopogon citratus): kinetics, isotherms and thermodynamics. Chem Int. 2016;2(2):89–102.
  • Lakshmanan R, Okoli C, Boutonnet M, et al. Microemulsion prepared magnetic nanoparticles for phosphate removal: time efficient studies. J Environ Chem Eng. 2014;2(1):185–189.
  • Khodadadi M, Hosseinnejad A, Rafati L, et al. Removal of phosphate from aqueous solutions by iron nano-magnetic particle coated with powder activated carbon. J Health Sci Technol. 2017;1(1):17–22.
  • Golder A, Samanta A, Ray S. Removal of phosphate from aqueous solutions using calcined metal hydroxides sludge waste generated from electrocoagulation. Sep Purif Technol. 2006;52(1):102–109.
  • Mahdavi S, Akhzari D. The removal of phosphate from aqueous solutions using two nano-structures: copper oxide and carbon tubes. Clean Techn Environ Policy. 2016;18(3):817–827.
  • Sedlak RI. Phosphorus and nitrogen removal from municipal wastewater: principles and practice. Boca Raton,FL: CRC press; 1991.
  • Vasudevan S, Oturan MA. Electrochemistry: as cause and cure in water pollution—an overview. Environ Chem Lett. 2014;12(1):97–108.
  • Chen L, Zhao X, Pan B, et al. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability. J Hazard Mater. 2015;284:35–42.
  • Rivera Corredor C, Garcia G, Dobrosz-Gómez I. Adsorptive removal of Cr (VI) from aqueous solution on hydrous cerium-zirconium oxide. Part I: process optimization by response surface methodology. Adsorpt Sci Technol. 2014;32(2-3):209–226.
  • Gupta V, Carrott P, Singh R, et al. Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresource Technol. 2016;216:1066–1076.
  • Saravanan R, Gupta V, Mosquera E, et al. Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J Mol Liq. 2014;198:409–412.
  • Gupta VK, Jain C, Ali I, et al. Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Res. 2002;36(10):2483–2490.
  • Asfaram A, Ghaedi M, Agarwal S, et al. Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv. 2015;5(24):18438–18450.
  • Gupta VK, Saleh TA. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environ Sci Pollut Res Int. 2013;20(5):2828–2843.
  • Saleh TA, Gupta VK. Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J Colloid Interface Sci. 2011;362(2):337–344.
  • Ahmaruzzaman M, Gupta VK. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind Eng Chem Res. 2011;50(24):13589–13613.
  • Chiban M, Benhima H, Saadi B, Nounah A, Sinan F, editors. Isotherms and kinetic study of dihydrogen and hydrogen phosphate ions (H $_ {2} $PO $_ {4}^-$and HPO $_ {4}^{2-} $) adsorption onto crushed plant matter of the semi-arid zones of Morocco: Asphodelus microcarpus, Asparagus albus and Senecio anthophorbium. J Phys IV France). 2005;123:393–399.
  • Biswas BK, Inoue K, Ghimire KN, et al. Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium. Bioresour Technol. 2008;99(18):8685–8690.
  • Saravanan R, Sacari E, Gracia F, et al. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq. 2016;221:1029–1033.
  • Adeli M, Yamini Y, Faraji M. Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arab J Chem. 2017;10:S514–S21.
  • Huang Y, Yang J-K, Keller AA. Removal of arsenic and phosphate from aqueous solution by metal (hydr-) oxide coated sand. ACS Sustainable Chem Eng. 2014;2(5):1128–1138.
  • Recillas S, García A, González E, et al. Preliminary study of phosphate adsorption onto cerium oxide nanoparticles for use in water purification; nanoparticles synthesis and characterization. Water Sci Technol. 2012;66(3):503–509.
  • Auffan M, Rose J, Bottero J-Y, Lowry GV, et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol. 2009;4(10):634–641.
  • Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc. 2002;124(35):10596–10604.
  • Lee LZ, Zaini MAA, Tang SH. Porous nanomaterials for heavy metal removal. In Handbook of ecomaterials. Cham: Springer; 2019. p. 469–494.
  • Mahdavi S, Amini N, Merrikhpour H, et al. Characterization of bare and modified nano-zirconium oxide (ZrO 2) and their applications as adsorbents for the removal of bivalent heavy metals. Korean J Chem Eng. 2017;34(1):234–244.
  • Mahdavi S, Molodi P, Zarabi M. Utilization of bare MgO, CeO2, and ZnO nanoparticles for nitrate removal from aqueous solution. Environ Prog Sustainable Energy. 2018;37(6):1908–1917.
  • Pradeep T. Noble metal nanoparticles for water purification: a critical review. Thin Solid Films. 2009;517(24):6441–6478.
  • Shukla R, Madras G. Facile synthesis of aluminium cobalt oxide for dye adsorption. J Environ Chem Eng. 2014;2(4):2259–2268.
  • Yuan H, Ma W, Chen C, et al. Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions. Chem Mater. 2007;19(7):1592–1600.
  • Zhang L, Yi M. Electrochemical nitrite biosensor based on the immobilization of hemoglobin on an electrode modified by multiwall carbon nanotubes and positively charged gold nanoparticle. Bioprocess Biosyst Eng. 2009;32(4):485–492.
  • Singh SA, Madras G. Photocatalytic degradation with combustion synthesized WO3 and WO3TiO2 mixed oxides under UV and visible light. Sep Purif Technol. 2013;105:79–89.
  • Wang F, Li C, Jimmy CY. Hexagonal tungsten trioxide nanorods as a rapid adsorbent for methylene blue. Sep Purif Technol. 2012;91:103–107.
  • Morales W, Cason M, Aina O, et al. Combustion synthesis and characterization of nanocrystalline WO3. J Am Chem Soc. 2008;130(20):6318–6319.
  • Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: possibilities and challenges. Adv Mater Weinheim. 2012;24(2):229–251.
  • Zhang L, Li J, Chen Z, et al. Preparation of Fenton reagent with H2O2 generated by solar light-illuminated nano-Cu2O/MWNTs composites. Appl Catal, A. 2006;299:292–297.
  • Xu H, Qu Z, Zhao S, et al. Enhancement of heterogeneous oxidation and adsorption of Hg0 in a wide temperature window using SnO2 supported LaMnO3 perovskite oxide. Chem Eng J. 2016;292:123–129.
  • Liu H, Hu C, Wang ZL. Composite-hydroxide-mediated approach for the synthesis of nanostructures of complex functional-oxides. Nano Lett. 2006;6(7):1535–1540.
  • Saravanan R, Gupta V, Prakash T, et al. Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J Mol Liq. 2013;178:88–93.
  • Gupta VK, Ali I, Saleh TA, et al. Chromium removal from water by activated carbon developed from waste rubber tires. Environ Sci Pollut Res Int. 2013;20(3):1261–1268.
  • Sparks DL, Page A, Helmke P, et al. Methods of soil analysis, part 3: Chemical methods. United States: John Wiley & Sons; 2020.
  • Merrikhpour H, Jalali M. Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Tech Environ Policy. 2013;15(2):303–316.
  • Gupta VK, Jain R, Nayak A, et al. Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Mater Sci Eng C. 2011;31(5):1062–1067.
  • Bayramoglu G, Gursel I, Tunali Y, et al. Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets. Bioresour Technol. 2009;100(10):2685–2691.
  • Mittal A, Mittal J, Malviya A, et al. Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci. 2010;344(2):497–507.
  • Örnek A, Özacar M, Şengil İA. Adsorption of lead onto formaldehyde or sulphuric acid treated acorn waste: equilibrium and kinetic studies. Biochem Eng J. 2007;37(2):192–200.
  • Simonin J-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J. 2016;300:254–263.
  • YH, Mckay G, Ys H, Mckay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451–465.
  • Mohammadi N, Khani H, Gupta VK, et al. Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies. J Colloid Interface Sci. 2011;362(2):457–462.
  • Chen W, Ghosh D, Chen S. Large-scale electrochemical synthesis of SnO 2 nanoparticles. J Mater Sci. 2008;43(15):5291–5299.
  • Gupta R, Sheikh HN, Kalsotra BL, et al. Synthesis and characterization of isothiocyanato complexes of dioxotungsten (VI) with mannich base ligands: Precursors for the preparation of pure phase nanosized tungsten (VI) trioxide: dioxotungsten (VI) isothiocyanato complexes with mannich bases: precursors for WO3. J Saudi Chem Soc. 2016;20(3):291–302.
  • Pullar R, Taylor M, Bhattacharya A. The manufacture of yttrium aluminium garnet. J Eur Ceram Soc. 1998;18(12):1759–1764.
  • Moore P. Elements of X-Ray crystallography. JG. 1968;76(5):611–612.
  • Zhang J, Gao L. Synthesis and characterization of nanocrystalline tin oxide by sol–gel method. J Solid State Chem. 2004;177(4-5):1425–1430.
  • Saravanan R, Karthikeyan S, Gupta V, et al. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C Mater Biol Appl. 2013;33(1):91–98.
  • Kennedy JF, Phillips GO, Williams PA. Recent advances in environmentally compatible polymers: Cellucon’99 Proceedings: Elsevier; 2001.
  • Kannan S. FT-IR and EDS analysis of the seaweeds Sargassum wightii (brown algae) and Gracilaria corticata (red algae). Int J Curr Microbiol Appl Sci. 2014;3(4):341–351.
  • Usharani S, Rajendran V. Morphologically controlled synthesis, structural and optical properties of CeO2/SnO2 nanocomposites. J Sci Adv Mater Devices. 2017;2(3):333–339.
  • Awual MR, Jyo A, El-Safty SA, et al. A weak-base fibrous anion exchanger effective for rapid phosphate removal from water. J Hazard Mater. 2011;188(1-3):164–171.
  • Long F, Gong J-L, Zeng G-M, et al. Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide. Chem Eng J. 2011;171(2):448–455.
  • Tanada S, Kabayama M, Kawasaki N, et al. Removal of phosphate by aluminum oxide hydroxide. J Colloid Interface Sci. 2003;257(1):135–140.
  • Leduc J-F, Leduc R, Cabana H. Phosphate adsorption onto chitosan-based hydrogel microspheres. Adsorpt Sci Technol. 2014;32(7):557–569.
  • Rahmani A, Mousavi HZ, Fazli M. Effect of nanostructure alumina on adsorption of heavy metals. Desalination. 2010;253(1-3):94–100.
  • Chen J, Kong H, Wu D, et al. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. J Hazard Mater. 2007;139(2):293–300.
  • Johansson L, Gustafsson JP. Phosphate removal using blast furnace slags and opoka-mechanisms. Water Res. 2000;34(1):259–265.
  • Febrianto J, Kosasih AN, Sunarso J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater. 2009;162(2-3):616–645.
  • Netzahuatl-Muñoz AR, del Carmen Cristiani-Urbina M, Cristiani-Urbina E. Chromium biosorption from Cr (VI) aqueous solutions by Cupressus lusitanica bark: kinetics, equilibrium and thermodynamic studies. PLoS One. 2015;10(9):e0137086.
  • Khambhaty Y, Mody K, Basha S, et al. Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chem Eng J. 2009;145(3):489–495.
  • Azimvand J, Didehban K, Mirshokraie S. Safranin-O removal from aqueous solutions using lignin nanoparticle-g-polyacrylic acid adsorbent: Synthesis, properties, and application. Adsorpt Sci Technol. 2018;36(7-8):1422–1440.
  • Riahi K, Thayer BB, Mammou AB, et al. Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers. J Hazard Mater. 2009;170(2-3):511–519.
  • Wahab MA, Hassine RB, Jellali S. Posidonia oceanica (L.) fibers as a potential low-cost adsorbent for the removal and recovery of orthophosphate. J Hazard Mater. 2011;191(1-3):333–341.
  • Moharami S, Jalali M. Effect of TiO2, Al2O3, and Fe3O4 nanoparticles on phosphorus removal from aqueous solution. Environ Prog Sustainable Energy. 2014;33(4):n/a– 19.
  • Samadani Langeroodi N, Tahery F, Mehrani S. Thermodynamic and kinetic investigation of citric acid adsorption by rice bran. NBR. 2015;2(3):166–175.
  • Zaki A, El-Sheikh M, Evans J, et al. Kinetics and mechanism of the sorption of some aromatic amines onto amberlite IRA-904 anion-exchange resin. J Colloid Interface Sci. 2000;221(1):58–63.
  • Gupta VK, Srivastava SK, Mohan D. Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag. Ind Eng Chem Res. 1997;36(6):2207–2218.
  • Vega ED, Narda GE, Ferretti FH. Adsorption of citric acid from dilute aqueous solutions by hydroxyapatite. J Colloid Interface Sci. 2003;268(1):37–42.
  • Shakirullah M, Ahmad I, Shah S. Sorption studies of nickel ions onto sawdust of Dalbergia sissoo. J Chinese Chem Soc. 2006;53(5):1045–1052.
  • Yan L-g, Xu Y-y, Yu H-q, et al. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. J Hazard Mater. 2010;179(1-3):244–250.
  • Nguyen TMP, Van HT, Nguyen TV, et al. phosphate adsorption by silver nanoparticles-loaded activated carbon derived from tea residue. Sci Rep. 2020;10(1):1–13.
  • Inal IIG, Holmes SM, Banford A, et al. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl Surf Sci. 2015;357:696–703.
  • Deliyanni E, Peleka E, Lazaridis N. Comparative study of phosphates removal from aqueous solutions by nanocrystalline akaganéite and hybrid surfactant-akaganéite. Sep Purif Technol. 2007;52(3):478–486.
  • Yao S, Li J, Shi Z. Phosphate ion removal from aqueous solution using an iron oxide-coated fly ash adsorbent. Adsorpt Sci Technol. 2009;27(6):603–614.
  • Lalley J, Han C, Mohan GR, et al. Phosphate removal using modified Bayoxide® E33 adsorption media. Environ Sci Water Res Technol. 2015;1(1):96–107.
  • Zhou Q, Wang X, Liu J, et al. Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol–Gel method. Chem Eng J. 2012;200-202:619–626.
  • Shahid MK, Kim Y, Choi Y-G. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale. Front Environ Sci Eng. 2019;13(5):71.
  • Daou T, Begin-Colin S, Greneche J-M, et al. Phosphate adsorption properties of magnetite-based nanoparticles. Chem Mater. 2007;19(18):4494–4505.
  • Xu G, Zhang Z, Deng L. Adsorption behaviors and removal efficiencies of inorganic, polymeric and organic phosphates from aqueous solution on biochar derived from sewage sludge of chemically enhanced primary treatment process. Water. 2018;10(7):869.
  • Liu Y, Hu X. Kinetics and thermodynamics of efficient phosphorus removal by a composite fiber. Appl Sci. 2019;9(11):2220.
  • Li Y, Xie Q, Hu Q, et al. Surface modification of hollow magnetic Fe3O4@NH2-MIL-101(Fe) derived from metal-organic frameworks for enhanced selective removal of phosphates from aqueous solution. Sci Rep. 2016;6:30651
  • Cheng Q, Li H, Xu Y, et al. Study on the adsorption of nitrogen and phosphorus from biogas slurry by NaCl-modified zeolite. PloS One. 2017;12(5):e0176109.
  • Zhu N, Yan T, Qiao J, et al. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere. 2016;164:32–40.