1,190
Views
2
CrossRef citations to date
0
Altmetric
Article

Research on rapid growth of monolayer graphene by vertical cold-wall CVD method

ORCID Icon, , , , , & show all
Pages 417-426 | Received 29 Jan 2020, Accepted 29 Aug 2020, Published online: 18 Sep 2020

References

  • Novoselov KS, Geim KA, Morozov VS, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5296):666–669.
  • Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photon. 2010;4(9):611–622.
  • Choi D, Kuru C, Choi C, et al. Unusually high optical transparency in hexagonal nanopatterned graphene with enhanced conductivity by chemical doping. Small. 2015;11(26):3143–3152.
  • Wang L, Liu W, Zhang Y, et al. Graphene-based transparent conductive electrodes for GaN-based light emitting diodes: Challenges and countermeasures. Nano Energy. 2015;12:419–436.
  • Wu C, Liu F, Liu B, et al. Enhanced opto-electrical properties of graphene electrode InGaN/GaN LEDs with a NiOx inter-layer. Solid-State Electron. 2015;109:47–51.
  • Meng J, Liu X, Zhang X, et al. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy. 2016;28:44–50.
  • Kim BJ, Hwang E, Kang MS, et al. Electrolyte-gated graphene Schottky barrier transistors. Adv Mater. 2015;27(39):5875–5881.
  • Peter WS, Jan-Ingo F, Eli AS. Epitaxial graphene on ruthenium. Nat Mater. 2008;7:406–411.
  • Xu K, Xie Y, Ma H, et al. ZnO nanorods/graphene/Ni/Au hybrid structures as transparent conductive layer in GaN LED for low work voltage and high light extraction. Solid-State Electron. 2016;126:5–9.
  • Xu K, Xu C, Xie Y, et al. GaN nanorod light emitting diodes with suspended graphene transparent electrodes grown by rapid chemical vapor deposition. Appl Phys Lett. 2013;103(22):222105.
  • Xu K, Xu C, Xie Y, et al. Graphene GaN-based Schottky ultraviolet detectors. IEEE Trans Electron Devices. 2015;62(9):2802–2808.
  • Kun X, Chen X, Jun D, et al. Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes. Appl Phys Lett. 2013;102(16):162102.
  • Li X, Cai W, Colombo L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009;9(12):4268–4272.
  • Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010;5(8):574–578.
  • Miseikis V, Convertino D, Mishra N, et al. Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor. 2D Materials. 2015;2(1):01400.
  • Bointon TH, Barnes MD, Russo S, et al. High quality monolayer graphene synthesized by resistive heating cold wall chemical vapor deposition. Adv Mater Weinheim. 2015;27(28):4200–4206.
  • Arjmandi-Tash H, Lebedev N, van Deursen PMG, et al. Hybrid cold and hot-wall reaction chamber for the rapid synthesis of uniform graphene. Carbon. 2017;118:438–442.
  • Hsieh Y, Chen D, Chiang W, et al. Recrystallization of copper at a solid interface for improved CVD graphene growth. RSC Adv. 2017;7(7):3736–3740.
  • Li J, Wang G, Geng H, et al. CVD growth of graphene on NiTi alloy for enhanced biological activity. ACS Appl Mater Interfaces. 2015;7(36):19876–19881.
  • Wu J, Xu H, Zhang J. Raman spectroscopy of graphene. Acta Chim Sin. 2014;72(3):301.
  • Pang J, Bachmatiuk A, Ibrahim I, et al. CVD growth of 1D and 2D sp2 carbon nanomaterials. J Mater Sci. 2016;51(2):640–667.