2,079
Views
10
CrossRef citations to date
0
Altmetric
Articles

Flexible hierarchical Pd/SiO2-TiO2 nanofibrous catalytic membrane for complete and continuous reduction of p-nitrophenol

, , , &
Pages 62-80 | Received 01 Sep 2020, Accepted 08 Mar 2021, Published online: 26 Mar 2021

References

  • Mohsen N, Saeed Y, Foroozan H, et al. Highly efficient catalytic degradation of p-nitrophenol by Mn3O4.CuO nanocomposite as a heterogeneous Fenton-like catalyst. J Exp Nanosci. 2020;15(1):322–336.
  • Wang J, Wu Z, Li T, et al. Catalytic PVDF membrane for continuous reduction and separation of p-nitrophenol and methylene blue in emulsified oil solution. Chem Eng J. 2018;334:579–586.
  • Shang K, Li W, Wang X, et al. Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process. Sep Purif Technol. 2019;218:106–112.
  • Chang W, Liu S, Qileng A, et al. In-situ synthesis of monodispersed Au nanoparticles on eggshell membrane by the extract of Lagerstroemia speciosa leaves for the catalytic reduction of 4-nitrophenol. Mater Res Express. 2018;6(1):015002.
  • Zhu X, Lv Z, Feng J, et al. Controlled fabrication of well-dispersed AgPd nanoclusters supported on reduced graphene oxide with highly enhanced catalytic properties towards 4-nitrophenol reduction. J Colloid Interface Sci. 2018;516:355–363.
  • Borhamdin S, Shamsuddin M, Alizadeh A. Biostabilised icosahedral gold nanoparticles: synthesis, cyclic voltammetric studies and catalytic activity towards 4-nitrophenol reduction. J Exp Nanosci. 2016;11(7):518–530.
  • Sardar R, Funston AM, Mulvaney P, et al. Gold nanoparticles: past, present, and future. Langmuir. 2009;25(24):13840–13851.
  • Pradhan A, Gogate P. Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry. J Hazard Mater. 2010;173(1-3):517–522.
  • Koklioti M, Saucedo-Orozco I, Quintana M, et al. Functionalised MoS2 supported core-shell Ag@Au nanoclusters for managing electronic processes in photocatalysis. Mater Res Bull. 2019;114:112–120.
  • Yi S, Zhuang W, Wu B, et al. Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor. Environ Sci Technol. 2006;40(7):2396–2401.
  • Tomei M, Annesini M. 4-Nitrophenol biodegradation in a sequencing batch reactor operating with aerobic-anoxic cycles. Environ Sci Technol. 2005;39(13):5059–5065.
  • Lv J, Wang A, Ma X, et al. One-pot synthesis of porous Pt-Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J Mater Chem A. 2015;3(1):290–296.
  • Miao J, Lu J, Jiang H, et al. Continuous and complete conversion of high concentration p-nitrophenol in a flow-through membrane reactor. AIChE J. 2019;65(9):e16692.
  • Wu Y-J, Wen M, Wu Q-S, et al. Ni/graphene nanostructure and its electron-enhanced catalytic action for hydrogenation reaction of nitrophenol. J Phys Chem C. 2014;118(12):6307–6313.
  • Wang H, Dong Z, Na C. Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p-nitrophenol. ACS Sustain Chem Eng. 2013;1(7):746–752.
  • Fazzini S, Nanni D, Ballarin B, et al. Straightforward synthesis of gold nanoparticles supported on commercial silica-polyethyleneimine beads. J Phys Chem C. 2012;116(48):25434–25443.
  • Liu K, Wang Y, Chen P, et al. Noncrystalline nickel phosphide decorated poly(vinylalcohol-co-ethylene) nanofibrous membrane for catalytic hydrogenation of p-nitrophenol. Appl Catal B–Environ. 2016;196:223–231.
  • Miao J, Liu X, Jiang H, et al. Pd nanoparticles immobilized on TiO2 nanotubes-functionalized ceramic membranes for flow-through catalysis. Korean J Chem Eng. 2015;32:1759–1765.
  • Liu Y, Peng M, Jiang H, et al. Fabrication of ceramic membrane supported palladium catalyst and its catalytic performance in liquid-phase hydrogenation reaction. Chem Eng J. 2017;313:1556–1566.
  • Peng M, Liu Y, Jiang H, et al. Enhanced catalytic properties of Pd nanoparticles by their deposition on ZnO-coated ceramic membranes. RSC Adv. 2016;6(3):2087–2095.
  • Wang J, Pei X, Liu G, et al. Gravity-driven catalytic nanofibrous membrane with microsphere and nanofiber coordinated structure for ultrafast continuous reduction of 4-nitrophenol. J Colloid Interface Sci. 2019;538:108–115.
  • Yutaka T, Takuya N, Satoshi M, et al. Performance characteristics and internal phenomena of polymer electrolyte membrane fuel cell with porous flow field. J Power Sources. 2013;238:21–28.
  • Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behaviour of Fe3O4-Ag/EG hybrid nanofluid: an experimental study. Exp Therm Fluid Sci. 2016;77:38–44.
  • Mao X, Si Y, Chen Y, et al. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv. 2012;2(32):12216–12223.
  • Zhu Q, Tang X, Feng S, et al. ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control. J Membr Sci. 2019;581:252–261.
  • Huang H, Pan L, Lim C, et al. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. Small. 2013;9(18):3153–3160.
  • Wang Q, Ren H, Zhao Y, et al. Facile and mild preparation of brookite-rutile heterophase-junction TiO2 with high photocatalytic activity based on a deep eutectic solvent (DES). J Mater Chem A. 2019;7(24):14613–14619.
  • Sun C, Wang N, Zhou S, et al. Preparation of self-supporting hierarchical nanostructured anatase/rutile composite TiO2 film. Chem Commun. 2008;28(28):3293–3295.
  • Chen Z, Liu Z, Wei T, et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv Mater. 2019;31(23):1807345.
  • Liu Y, Tang A, Zhang Q, et al. Seed-mediated growth of anatase TiO2 nanocrystals with core-antenna structures for enhanced photocatalytic activity. J Am Chem Soc. 2015;137(35):11327–11339.
  • Cui Y, Wang W, Li N, et al. Hetero-seed meditated method to synthesize ZnO/TiO2 multipod nanostructures with ultra-high yield for dye-sensitized solar cells. J Alloy Compd. 2019;805:868–872.
  • Xu C, Wu J, Desai U, et al. Multilayer assembly of nanowire arrays for dye-sensitized solar cells. J Am Chem Soc. 2011;133(21):8122–8125.
  • Dhawale D, Gujar T, Lokhande C. TiO2 nanorods decorated with Pd nanoparticles for enhanced liquefied petroleum gas sensing performance. Anal Chem. 2017;89(16):8531–8537.
  • Mansouri A, Semagina N. Enhancement of palladium-catalyzed direct desulfurization by yttrium addition. Appl Catal A. 2017;543:43–50.
  • Lv M, Zheng D, Ye M, et al. Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells. Nanoscale. 2012;4(19):5872–5879.
  • Ao C, Tian P, Ouyang L, et al. Dispersing Pd nanoparticles on N-doped TiO2: a highly selective catalyst for H2O2 synthesis. Catal Sci Technol. 2016;6(13):5060–5068.
  • Wang H, Wang Y, Jia A, et al. A novel bifunctional Pd-ZIF-8/rGO catalyst with spatially separated active sites for the tandem knoevenagel condensation-reduction reaction. Catal Sci Technol. 2017;7(23):5572–5584.
  • Liu G, Wang G, Hu Z, et al. Ag2O nanoparticles decorated TiO2 nanofibers as a p-n heterojunction for enhanced photocatalytic decomposition of RhB under visible light irradiation. Appl Surf Sci. 2019;465:902–910.
  • Bao W, Liang X, Liu Y, et al. Effects of AC and DC corona on the surface properties of silicone rubber: characterization by contact angle measurements and XPS high resolution scan. IEEE Trans Dielect Electr Insul. 2017;24(5):2911–2919.
  • Awang C, Dayang N, Ismail A, et al. The influence of alumina particle size on the properties and performance of alumina hollow fiber as support membrane for protein separation. Sep Purif Technol. 2020;250:117147.
  • Wang X, Dou L, Yang L, et al. Hierarchical structured MnO2@SiO2 nanofibrous membranes with superb flexibility and enhanced catalytic performance. J Hazard Mater. 2017;324(Pt B):203–212.
  • Neal R, Hughes R, Sapkota P, et al. Effect of nanoparticle ligands on 4-nitrophenol reduction: reaction rate, induction time, and ligand desorption. ACS Catal. 2020;10(17):10040–10050.
  • Zhan G, Hong Y, Lu F, et al. Kinetics of liquid phase oxidation of benzyl alcohol with hydrogen peroxide over bio-reduced Au/TS-1 catalysts. J Mol Catal A: Chem. 2013;366:215–221.
  • Chang Y-C, Chen D-H. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J Hazard Mater. 2009;165(1-3):664–669.
  • Feng J, Su L, Ma Y, et al. CuFe2O4 magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol. Chem Eng J. 2013;221:16–24.
  • Wang Z, Chen X, Li K, et al. Preparation and catalytic property of PVDF composite membrane with polymeric spheres decorated by Pd nanoparticles in membrane pores. J Membr Sci. 2015;496:95–107.
  • Bi S, Li K, Chen X, et al. Preparation and catalytic properties of composites with palladium nanoparticles and poly(methacrylic acid) microspheres. Polym Compos. 2014;35(11):2251–2260.
  • Xia J, He G, Zhang L, et al. Hydrogenation of nitrophenols catalysed by carbon black-supported nickel nanoparticles under mild conditions. Appl Catal B-Environ. 2016;180:408–415.
  • Domènech B, Muñoz M, Muraviev D, et al. Catalytic membranes with palladium nanoparticles: from tailored polymer to catalytic applications. Catal Today. 2012;193(1):158–164.
  • Emin C, Gu Y, Remigy J, et al. Polyethersulfone hollow fibre modified with poly(styrenesulfonate) and Pd nanoparticles for catalytic reaction. Eur Phys J Spec Top. 2015;224(9):1843–1848.
  • Emin C, Remigy J, Lahitte J. Influence of UV grafting conditions and gel formation on the loading and stabilization of palladium nanoparticles in photografted polyethersulfone membrane for catalytic reactions. J Membr Sci. 2014;455:55–63.
  • Yin J, Zhan F, Jiao T, et al. Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesised through electrospinning strategy for wastewater treatment. Chinese Chem Lett. 2020;31(4):992–995.
  • Mahdavi H, Heidari A. Chelated palladium nanoparticles on the surface of plasma-treated polyethersulfone membrane for an efficient catalytic reduction of p-nitrophenol. Polym Adv Technol. 2018;29(2):989–1001.