1,728
Views
3
CrossRef citations to date
0
Altmetric
Articles

RETRACTED ARTICLE: Preparation of hollow Aux-Cu2O nanospheres by galvanic replacement to enhance the selective electrocatalytic CO2 reduction to ethanol

, , , &
Pages 173-186 | Received 09 Sep 2021, Accepted 05 Nov 2021, Published online: 08 Apr 2022

References

  • Yuan Q, Li Y, Yu P, et al. Reaction mechanism on Ni-C2-NS single-atom catalysis for the efficient CO2 reduction reaction. J Exp Nanosci. 2021;16(1):256–265.
  • Ledezma-Yanez I, Gallent EP, Koper MTM, et al. Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction. Catal. Today. 2016;262:90–94.
  • Lum Y, Ager JW. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew Chem Int Ed. 2018;57(2):551–554.
  • Lum Y, Yue B, Lobaccaro P, et al. Optimizing C-C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J Phys Chem C. 2017;121(26):14191–14203.
  • Zhang Y, Li Y, Tan Q, et al. Facile synthesis of two-dimensional copper terephthalate for efficient electrocatalytic CO2 reduction to ethylene. J Exp Nanosci. 2021;16(1):247–255.
  • Li M, Zhang S, Li L, et al. Construction of highly active and selective polydopamine modified hollow ZnO/Co3O4 pn heterojunction catalyst for photocatalytic CO2 reduction. ACS Sustain Chem Eng. 2020;8(30):11465–11476.
  • Zhang S, Li M, Qiu W, et al. Heterogeneous molecular rhenium catalyst for CO2 photoreduction with high activity and tailored selectivity in an aqueous solution. Appl Catal, B. 2019;259:118113.
  • Kuhl KP, Cave ER, Abram DN, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci. 2012;5(5):7050–7059.
  • Sandberg RB, Montoya JH, Chan K, et al. CO-CO coupling on Cu facets: coverage, strain and field effects. Surf. Sci. 2016;654:56–62.
  • Huang Y, Handoko A, Hirunsit P, et al. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 2017;7(3):1749–1756.
  • Li YC, Wang Z, Yuan T, et al. Binding site diversity promotes CO2 electroreduction to ethanol. J Am Chem Soc. 2019;141(21):8584–8591.
  • Ren D, Ang BS, Yeo BS. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 2016;6(12):8239–8247.
  • Morales-Guio CG, Cave ER, Nitopi SA, et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat Catal. 2018;1(10):764–771.
  • Calle-Vallejo F, Koper MTM. Theoretical considerations on the electroreduction of CO to C2 species on Cu (100) electrodes. Angew Chem Int Ed Engl. 2013;52(28):7282–7285.
  • Ren D, Deng Y, Handoko AD, et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. ACS Catal. 2015;5(5):2814–2821.
  • Senlin C, Xin L, Robertson Alex W. Electrocatalytic CO2 reduction to ethylene over CeO2-Supported Cu nanoparticles: Effect of exposed facets of CeO2. Acta Phys Chim Sin. 2021;37(5):2009023.
  • Fan Q, Zhang M, Jia M, et al. Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater Today Energy. 2018;10:280–301.
  • Zhang L, Li M, Zhang S, et al. Promoting carbon dioxide electroreduction toward ethanol through loading Au nanoparticles on hollow Cu2O nanospheres. Catal Today. 2021;365:348–356.
  • Cao X, Cao G, Li M, et al. Enhanced ethylene formation from carbon dioxide reduction through sequential catalysis on Au decorated cubic Cu2O electrocatalyst. Eur J Inorg Chem. 2021;2021(24):2353–2364.
  • Dinh C, Burdyny T, Kibria G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science. 2018;360(6390):783–787.
  • De Luna P, Quintero-Bermudez R, Dinh C-T, et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal. 2018;1(2):103–110.
  • Nie X, Griffin GL, Janik MJ, et al. Surface phases of Cu2O(111) under CO2 electrochemical reduction conditions. Catal. Commun. 2014;52:88–91.
  • Shang L, Lv X, Shen H, et al. Selective carbon dioxide electroreduction to ethylene and ethanol by core-shell copper/cuprous oxide. J. Colloid. Interf. Sci. 2019;552:426–431.
  • Mistry H, Varela AS, Bonifacio CS, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat Commun. 2016;7:12123–12130.
  • Xiao H, Cheng T, Goddard WA, et al. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). Nat. Commun. 2017;139:130–136.
  • Hao L, Sun Z. Metal oxide-based materials for electrochemical CO2 reduction. Acta Physico-ChimicaSinica. 2021;37(7):2009033.
  • Begum S, Jones IP, Lynch DE, et al. One-step deposition of Au nanoparticles onto chemically modified ceramic hollow spheres via self-assembly. J Exp Nanosci. 2012;7(1):1–16.
  • Fu S, Gao J, Wu Y, et al. Facile synthesis of hierarchically structured NiO flower-like hollow spheres. J Exp Nanosci. 2016;11(7):531–539.
  • Sun S, Zhang X, Yang Q, et al. Cuprous oxide (Cu2O) crystals with tailored architectures: a comprehensive review on synthesis, fundamental properties, functional modifications and applications. Prog. Mater. Sci. 2018;96:111–173.
  • Zhang S, Wu Y, Zhang YX, et al. Dual-atom catalysts: controllable synthesis and electrocatalytic applications. Sci China Chem. 2021;64(11):1908–1915.
  • Zhang S, Wu Q, Tang L, et al. Individual high-quality N-doped carbon nanotubes embedded with nonprecious metal nanoparticles toward electrochemical reaction. ACS Appl Mater Interf. 2018;10(46):39757–39767.
  • Xu H, Wang W. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew Chem Int Ed Engl. 2007;46(9):1489–1492.
  • Xu H, Wang W, Zhou L. A growth model of single crystalline hollow sphere: oriented attachment of Cu2O nanoparticles to the single crystalline shell wall. Cryst. Growth Des. 2008;8(10):3486–3489.
  • Papaderakis A, Mintsouli I, Georgieva J, et al. Electrocatalysts prepared by galvanic replacement. Catalysts. 2017;7:80–114.
  • Xiong L, Li S, Zhang B, et al. Galvanic replacement-mediated synthesis of hollow Cu2O-Au nanocomposites and Au nanocages for catalytic and SERS applications. RSC Adv. 2015;5(93):76101–76106.
  • Li Q, Fu J, Zhu W, et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Am Chem Soc. 2017;139(12):4290–4293.
  • Sahai A, Goswami N, Kaushik SD, et al. Cu/Cu2O/CuO nanoparticles: novel synthesis by exploding wire technique and extensive characterization. Appl. Surf. Sci. 2016;390:974–983.
  • Li P, Lv W, Ai S. Green and gentle synthesis of Cu2O nanoparticles using lignin as reducing and capping reagent with antibacterial properties. J Exp Nanosci. 2016;11(1):18–27.
  • Zhu C, Osherov A, Panzer MJ. Surface chemistry of electrodeposited Cu2O films studied by XPS. Electrochim Acta. 2013;111:771–778.
  • Wang L, Li S, Zhang B, et al. Novel Au/Cu2O multi-shelled porous heterostructures for enhanced efficiency of photoelectrochemical water splitting. J Mater Chem A. 2017;5(27):14415–14421.
  • Xiong Z, Zhang L, Ma J, et al. Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation. Chem Commun (Camb). 2010;46(33):6099–6101.
  • Procaccini RA, Schreiner WH, Vázquez M, et al. Surface study of films formed on copper and brass at open circuit potential. Appl Surf Sci. 2013;268:171–178.
  • Li Q, Li M, Zhang S, et al. Tuning Sn-Cu catalysis for electrochemical reduction of CO2 on partially reduced oxides SnOx-CuOx-modified Cu electrodes. Catalysts. 2019;9(5):476–489.
  • Lee S, Park G, Lee J, et al. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 2017;7(12):8594–8604.
  • Gao J, Ren D, Guo X, et al. Sequential catalysis enables enhanced C-C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts. Faraday Discuss. 2019;215:282–296.