2,185
Views
0
CrossRef citations to date
0
Altmetric
Articles

Controlled synthesis of α-Al2O3 supported Ag particles with tuning catalytic performance

, , &
Pages 1-13 | Received 11 Oct 2021, Accepted 03 Dec 2021, Published online: 20 Dec 2021

References

  • Vita A, Italiano C, Pino L, et al. Activity and stability of powder and monolithr-coated Ni/GDC catalysts for CO2 methanation. Appl Catal B. 2018;226:384–395.
  • Oliviero L, Barbier, Jr. J, Labruquère S, et al. Role of themetal-support interface in the total oxidation of carboxylic acids over Ru/Ce02 catalysts. Catal Lett. 1999;60(1/2):15–19.
  • Nørskov JK, Bligaard T, Hvolbaek B, et al. The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev. 2008;37(10):2163–2171.
  • Wei Z, Chen L, Thompson DM, et al. Effect of particle size on in vitro cytotoxicity of titania and alumina nanoparticles. J Exp Nanosci. 2014; 9(6):625–638.
  • Yang B, Pan Y, Lin X, et al. Stabilizing gold adatoms by thiophenyl derivatives: a possible route toward metal redispersion. J Am Chem Soc. 2012;134(27):11161–11167.
  • Behafarid F, Roldan Cuenya B. Towards the understanding of sintering phenomena at the nanoscale: Geometric and environmental effects. Top Catal. 2013;56(15–17):1542–1559.
  • Morgan K, Burch R, Daous M, et al. Application of halohydrocarbons for the re-dispersion of gold particles. Catal Sci Technol. 2014;4(3):729–737.
  • Borhamdin S, Shamsuddin M, Alizadeh A. Biostabilised icosahedral gold nanoparticles: synthesis, cyclic voltammetric studies and catalytic activity towards 4-nitrophenol reduction. J Exp Nanosci. 2016; 11(7):518–530.
  • Pei X, Deng Y, Li Y, et al. Size-controllable ultrafine palladium nanoparticles immobilized on calcined chitin microspheres as efficient and recyclable catalysts for hydrogenation. Nanoscale 2018;10(30):14719–14725.,.
  • Eskandari S, Liu Q, Samad J, et al. A pinch of salt to control supported Pt nanoparticle size. Catal Today 2017;280(2):246–252.
  • Eskandari S, Li Y, F. Tao F, et al. The use of salts to control silica supported Pt particle size in charge enhanced dry impregnation syntheses. Catal Today 2019;334:187–192.
  • Liu N, Chen G, Dong W, et al. Preparation of Au nanoparticles with high dispersion and thermal stability by a controlled impregnation method for alcohol oxidation. Gold Bull. 2017;50(2):163–175.
  • Cheng Y-J, Luo G-F, Zhu J-Y, et al. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl Mater Interfaces 2015;7(17):9078–9087.
  • Tolaymat TM, El Badawy AM, Genaidy A, et al. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ. 2010;408(5):999–1006.
  • Wen C, Yin A, Dai W-L, et al. Recent advances in silver-based heterogeneous catalysts for green chemistry processes. Appl Catal B Environ. 2014;160-161:730–741.
  • Li G, Wang Y, Mao L. Recent progress in highly efficient Ag-based visible-light photocatalysts. RSC Adv. 2014;4(96):53649–53661.
  • Cheng Y, Wang F, Fang C, et al. Preparation and characterization of size and morphology controllable silver nanoparticles by citrate and tannic acid combined reduction at a low temperature. J Alloys Compd. 2016;658:684–688.
  • Liu H-L, Nosheen F, Wang X. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chem Soc Rev. 2015;44(10):3056–3078.
  • Zhang Q, Li W, Moran C, et al. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties. J Am Chem Soc. 2010;132(32):11372–11378.
  • Li C-J, Bi X. Silver catalysis in organic synthesis. Newark: John Wiley & Sons; 2019.
  • Kemp RA, Evans WE, Matusz M. Process for preparing ethylene oxide catalysts. European patent EP0,716,884. 2009.
  • Liang J, Zhang X, Jing L, et al. N-doped ordered mesoporous carbon as a multifunctional support of ultrafine Pt nanoparticles for hydrogenation of nitroarenes. Chin J Catal. 2017;38(7):1252–1260.
  • Wang Q, Jia W, Liu B, et al. Hierarchical structure based on Pd(Au) nanoparticles grafted onto magnetite cores and double layered shells: enhanced activity for catalytic applications. J Mater Chem A. 2013;1(41):12732–12741.
  • Kästner C, Thünemann AF. Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir 2016;32(29):7383–7391.
  • Zhao P, Feng X, Huang D, et al. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord Chem Rev. 2015;287:114–136.
  • Wunder S, Polzer F, Lu Y, et al. Kinetic analysis of catalytic reduction of 4-Nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C. 2010;114(19):8814–8820.
  • Man W, Di T, Tian P, et al. Synthesis of micron-SiO2@nano-Ag particles and their catalytic performance in 4-nitrophenol reduction. Appl Surf Sci. 2013;283(20):389–395.
  • Dong F, Guo W, Park S-K, et al. Controlled synthesis of novel cyanopropyl polysilsesquioxane hollow spheres loaded with highly dispersed Au nanoparticles for catalytic applications. Chem Commun (Camb). 2012;48(8):1108–1110.
  • Liu R, Guo Y, Odusote G, et al. Priestley, core–shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent. ACS Appl Mater Interfaces 2013;5(18):9167–9171.
  • Li SF, Liu BR, Huang L, et al. Reaction engineering. Beijing: Chemical Industry Press; 2000.
  • Corro G, Vidal E, Cebada S, et al. Electronic state of silver in Ag/SiO2 and Ag/ZnO catalysts and its effect on diesel particulate matter oxidation: an XPS study. Appl Catal B. 2017;216:1–10.
  • Seker E, Cavataio J, Gulari E, et al. Nitric oxide reduction by propene over silver/alumina and silver–gold/alumina catalysts: effect of preparation methods. Appl Catal A. 1999;183(1):121–134.
  • Hoflund GB, Hazos ZF, Salaita GN. Surface characterization study of Ag, AgO, and Ag2O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Phys Rev B. 2000;62(16):11126–11133.
  • Kaspar TC, Droubay T, Chambers SA, et al. Spectroscopic evidence for Ag(III) in highly oxidized silver films by X-ray photoelectron spectroscopy. J Phys Chem C. 2010;114(49):21562–21571.
  • Fang R, He M, Huang H, et al. Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO2 catalyst at room temperature. Chemosphere 2018;213:235–243.
  • Igbari O, Xie Y, Jin Z, et al. Microstructural and electrical properties of CuAlO2 ceramic prepared by a novel solvent-free ester elimination process. J Alloys Compd. 2015;653:219–227.
  • Bukhtiyarov AV, Stakheev AY, Mytareva AI, et al. In situ XPS study of the size effect in the interaction of NO with the surface of the model Ag/Al2O3/FeCrAl catalysts. Russ Chem Bull. 2015;64(12):2780–2785.