1,211
Views
4
CrossRef citations to date
0
Altmetric
Articles

Describing a modern therapeutic drug prepared by in situ decorated gold nanoparticles on starch-modified magnetic nanoparticles to treat the cutaneous wound: a preclinical trial study

, , , , , , & show all
Pages 150-162 | Received 08 Nov 2021, Accepted 14 Mar 2022, Published online: 31 Mar 2022

References

  • Oliveira Mussel RL, Sá Silva E, Costa AMA, et al. Mast cells in tissue response to dentistry materials: an adhesive resin, a calcium hydroxide and a glass ionomer cement. J Cellular Mol Med. 2003;7(2):171–173.
  • Kumar B, Vijaykumar M, Govindarajan R, et al. J Ethnopharmacol. 2008; 12:103–110.
  • Guo, L. A. Dipietro S. CROBM Online. 2010; 89:219–229.
  • Souba WW, Wilmore D. Diet and nutrition in case of the patient with surgery. 9th ed, Baltimore, MD: Williams and Wilkins Press. 1999. 1589–1618.
  • Hajialyani M, Tewari D, Sobarzo-Sánchez E, et al. Natural product-based nanomedicines for wound healing purposes: therapeutic targets and drug delivery systems. IJN. 2018;Volume 13:5023–5043.
  • Sivaraj R, Pattanathu K, Rajiv P, et al. Biogenic copper oxide nanoparticles synthesis using tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2014;133:178–181.
  • Mahdavi B, Saneei S, Qorbani M, et al. Appl Organometal Chem. 2019:e5164.
  • (a) Veisi H, Hemmati S, Safarimehr P, In situ immobilized palladium nanoparticles on surface of poly-methyldopa coated-magnetic nanoparticles (Fe3O4@PMDA/Pd): a magnetically recyclable nanocatalyst for cyanation of aryl halides with K4[Fe(CN)6]. J. Catal. 2018;365:204–212. (b) H, Veisi S, Razeghi P, Mohammadi S, Hemmati Mater. Sci. Eng. C. 2019; 97624:–631. (c) H, Veisi SB, Moradi A, Saljooqi P, Safarimehr Mater. Sci. Eng. C. 2019; 100445:–452. (d) Nodehi M, Baghayeri M, Ansari R, & Veisi H, Mater. Chem. Phys. 244122687. 2020; e) Veisi H, Mohammadi L, Hemmati S, Tamoradi T, & Mohammadi P, ACS Omega. 413991:–14003. 2019; f) Taheri S, Veisi H, & Hekmati M, New J. Chem. 415075:–5081. 2017; g) Veisi H, Hemmati S, & Safarimehr P, J. Catal. 365204:–212. 2018; h) Tamoradi T, Veisi H, Karmakar B, Gholami J. Mater. Sci. Eng. C. 107110260:–110270. 2020.
  • Oueslati MH, Tahar LB, Harrath AH. Catalytic, antioxidant and anticancer activities of gold nanoparticles synthesized by kaempferol glucoside from lotus leguminosae. Arab. J. Chem. 2020;13(1):3112–3122.
  • Sun B, Hu N, Han L, et al. Anticancer activity of green synthesised gold nanoparticles from marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif Cells Nanomed Biotechnol. 2019;47(1):4012–4019.
  • Wu T, Duan X, Hu C, et al. Synthesis and characterization of gold nanoparticles from abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif Cells Nanomed Biotechnol. 2019;47(1):512–523.
  • Sarina S, Waclawik ER, Zhu H. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem. 2013;15(7):1814–1833.
  • Wang DM, Duan HC, Lü JH, et al. Fabrication of thermo-responsive polymer functionalized reduced graphene oxide@Fe 3 O 4 @Au magnetic nanocomposites for enhanced catalytic applications. J Mater Chem A. 2017;5(10):5088–5097.
  • Pardo IR, Pons MR, Heredia AA, et al. Fe3O4@Au@mSiO2 as an enhancing nanoplatform for rose bengal photodynamic activity. Nanoscale. 2017;9(29):10388–10396.
  • Suchomel P, Kvitek L, Prucek R, et al. Sci. Rep. 2018;8:1–11.
  • Amirmahani N, Rashidi M, Mahmoodi NO. Appl. Organometal. Chem. 2020:e5625.
  • Gutierrez L-F, Hamoudi S, Belkacemi K. Synthesis of gold catalysts supported on mesoporous silica materials: recent developments. Catalysts. 2011;1(1):97–154.
  • Veisi H, Ghorbani M, Hemmati S. Sonochemical in situ immobilization of Pd nanoparticles on green tea extract coated Fe3O4 nanoparticles: an efficient and magnetically recyclable nanocatalyst for synthesis of biphenyl compounds under ultrasound irradiations. Mater Sci Eng C Mater Biol Appl. 2019;98:584–593.
  • Zangeneh M, Bovandi MS, Gharehyakheh S, et al. Appl. Organometal. Chem. 2019;33:e4961.
  • Zangeneh MM, Joshani Z, Zangeneh A, et al. Appl. Organometal. Chem. 2019;33:e5016.
  • Zangeneh A, Zangeneh MM, Moradi R. Appl. Organometal. Chem. 2020;34:e5247.
  • Zangeneh M, Zangeneh M, Pirabbasi AE, et al. M. Almasi. Appl. Organometal. Chem. 2019;33:e5246.
  • Mahdavi B, Paydarfard S, Zangeneh MM, et al. Appl. Organometal. Chem. 2019;33:e5248.
  • Zangeneh MM, Pooyanmehr M, Zangeneh A. Biochemical, histopathological, and pharmacological evaluations of cutaneous wound healing properties of quercus brantii ethanolic extract ointment in male rats. Comp Clin Pathol. 2019;28(5):1483–1493.
  • Jalalvand AR, Zhaleh M, Goorani S, et al. Chemical characterization and antioxidant, cytotoxic, antibacterial, and antifungal properties of ethanolic extract of allium saralicum R.M. Fritsch leaves rich in linolenic acid, methyl ester. J Photochem Photobiol B. 2019;192:103–112.
  • Zangeneh A, Zangeneh MM. Appl. Organometal. Chem. 2020;34:e5290.
  • Zangeneh MM, Zangeneh A. Appl. Organometal. Chem. 2020;34:e5271.
  • Hemmati S, Joshani Z, Zangeneh A, et al. Appl. Organometal. Chem. 2020;34:e5267.
  • Zhaleh M, Zangeneh A, Goorani S, et al. In vitro and in vivo evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing properties of gold nanoparticles produced via a green chemistry synthesis using gundelia tournefortii L. as a capping and reducing agent green synthesis of gold nanoparticles using gundelia tournefortii L. Appl Organometal Chem. 2019;33:e5015.
  • Shahriari M, Hemmati S, Zangeneh A, et al. Appl. Organometal. Chem. 2019;33:e5189.
  • Zangeneh MM, Saneei S, Zangeneh A, et al. Appl. Organometal. Chem. 2019;33:e5216.
  • Zangeneh MM. Appl. Organometal. Chem. 2019;33:e4963.
  • Ahmeda A, Zangeneh A, Zangeneh MM. Appl. Organometal. Chem. 2020;34:e5378.
  • Zangeneh MM. Appl. Organometal. Chem. 2020;34:e5295.
  • Phillips GD, Whitehead RA, Knighton DR. Initiation and pattern of angiogenesis in wound healing in the rat. Am J Anat. 1991;192(3):257–262.
  • Lazarus GS, Cooper DM, Knighton DR, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol. 1994;130(4):489–493.
  • Azhdari-Zarmehri H, Nazemi S, Ghasemi E, et al. JBUMS. 2014; 16:42–48.
  • Caetano GF, Fronza M, Leite MN, et al. Comparison of collagen content in skin wounds evaluated by biochemical assay and by computer-aided histomorphometric analysis. Pharm Biol. 2016;54(11):2555–2559.
  • Dwivedi D, Dwivedi M, Malviya S, et al. Evaluation of wound healing, anti-microbial and antioxidant potential of pongamia pinnata in wistar rats. J Tradit Complement Med. 2017;7(1):79–85.
  • Nayak BS, Isitor G, Davis EM, et al. The evidence based wound healing activity ofLawsonia inermis linn. Phytother Res. 2007;21(9):827–831.
  • Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23.