1,491
Views
3
CrossRef citations to date
0
Altmetric
Articles

Synergy of green-synthesized silver nanoparticles and Vatica diospyroides fruit extract in inhibiting Gram-positive bacteria by inducing membrane and intracellular disruption

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 420-438 | Received 07 Feb 2022, Accepted 26 May 2022, Published online: 10 Jun 2022

References

  • Gonelimali FD, Lin J, Miao W, et al. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol. 2018;9:1639. https://doi.org/10.3389/fmicb.2018.01639.
  • McMurray RL, Ball M, Tunney MM, et al. Antibacterial activity of four plant extracts extracted from traditional Chinese medicinal plants against Listeria monocytogenes, Escherichia coli, and Salmonella enterica subsp. enterica serovar enteritidis. Microorganisms 2020;8(6):962. https://doi.org/10.3390/microorganisms8060962.
  • Tura GT, Eshete WB, Tucho GT. Antibacterial efficacy of local plants and their contribution to public health in rural Ethiopia. Antimicrob Resist Infect Control 2017;6:76. https://doi.org/10.1186/s13756-017-0236-6.
  • Hemeg HA, Moussa IM, Ibrahim S, et al. Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi J Biol Sci. 2020;27(12):3221–3227. https://doi.org/10.1016/j.sjbs.2020.08.015
  • Gupta PD, Birdi TJ. Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med. 2017;8(4):266–275. https://doi.org/10.1016/j.jaim.2017.05.004.
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227–1249. https://doi.org/10.2147/IJN.S121956.
  • Asare N, Instanes C, Sandberg WJ, et al. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 2012;291(1-3):65–72. https://doi.org/10.1016/j.tox.2011.10.022.
  • Amaro F, Morón Á, Díaz S, et al. Metallic nanoparticles—friends or foes in the battle against antibiotic-resistant bacteria? Microorganisms 2021;9(2):364. https://doi.org/10.3390/microorganisms9020364.
  • Zhang D, Ma XL, Gu Y, et al. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem. 2020;8:799. https://doi.org/10.3389/fchem.2020.00799.
  • Qing Y, Cheng L, Li R, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed. 2018;13:3311–3327. https://doi.org/10.2147/IJN.S165125.
  • Masum M, Siddiqa MM, Ali KA, et al. Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen acidovorax oryzae strain rs-2 of rice bacterial brown stripe. Front Microbiol. 2019;10:820. https://doi.org/10.3389/fmicb.2019.00820.
  • Nguyen DH, Lee JS, Park KD, et al. Green silver nanoparticles formed by Phyllanthus urinaria, Pouzolzia zeylanica, and Scoparia dulcis leaf extracts and the antifungal activity. Nanomaterials (Basel, Switzerland) 2020;10(3):542. https://doi.org/10.3390/nano10030542.
  • Meena RK, Meena R, Arya DK, et al. Synthesis of silver nanoparticles by Phyllanthus emblica plant extract and their antibacterial activity. Mat Sci Res India 2020;17(2):136–145. http://dx.doi.org/10.13005/msri/170206.
  • Aabed K, Mohammed AE. Synergistic and antagonistic effects of biogenic silver nanoparticles in combination with antibiotics against some pathogenic microbes. Front Bioeng Biotechnol. 2021;9:652362. https://doi.org/10.3389/fbioe.2021.652362.
  • Otieno JN, Hosea KM, Lyaruu HV, et al. Multi-plant or single-plant extracts, which is the most effective for local healing in tanzania? Afr J Tradit Complement Altern Med. 2008;5:165–172. https://doi.org/10.4314/ajtcam.v5i2.31269.
  • Katva S, Das S, Moti HS, et al. Antibacterial synergy of silver nanoparticles with gentamicin and chloramphenicol against Enterococcus faecalis. Phcog Mag. 2017;13:S828–S33. https://doi.org/10.4103/pm.pm_120_17.
  • Chen YH, Wang WH, Lin SH, et al. Synergistic antibacterial effect of casein-AgNPs combined with tigecycline against Acinetobacter baumannii. Polymers 2021;13(9):1529. https://doi.org/10.3390/polym13091529.
  • Essawy E, Abdelfattah MS, El-Matbouli M, et al. Synergistic effect of biosynthesized silver nanoparticles and natural phenolic compounds against drug-resistant fish pathogens and their cytotoxicity: an in vitro study. Mar Drugs 2021;19(1):22. https://doi.org/10.3390/md19010022.
  • Keawchai K, Chumkaew P, Permpoonpattana P, et al. Synergistic effect of Hydnophytum formicarum tuber and vatica diospyroides symington cotyledon extracts with ampicillin on pathogenic bacteria. J Appl Biol Biotechnol. 2022;10:6–11. https://doi.org/10.7324/JABB.2022.100202.
  • Musimun C, Chuysongmuang M, Permpoonpattana P, et al. FACS analysis of bacterial responses to extracts of vatica diospyroides fruit show dose and time dependent induction patterns. Walailak J Sci Technol. 2017;14:883–891. https://wjst.wu.ac.th/index.php/wjst/article/view/2376.
  • Ramesh PS, Kokila T, Geetha D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using emblica officinalis fruit extract. Spectrochim Acta A Mol Biomol Spectrosc. 2015;142:339–343. https://doi.org/10.1016/j.saa.2015.01.062.
  • Mohd Yusof H, Abdul Rahman N, Mohamad R, et al. Microbial mediated synthesis of silver nanoparticles by Lactobacillus plantarum TA4 and its antibacterial and antioxidant activity. Appl Sci. 2020;10(19):6973. https://doi.org/10.3390/app10196973
  • Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007;42(4):321–324. https://doi.org/10.1016/j.ymeth.2007.01.006.
  • Mohammadi M, Khayat H, Sayehmiri K, et al. Synergistic effect of colistin and rifampin against multidrug resistant Acinetobacter baumannii: A systematic review and Meta-analysis. Open Microbiol J. 2017;11:63–71. https://doi.org/10.2174/1874285801711010063.
  • Paramelle D, Sadovoy A, Gorelik S, et al. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 2014;139(19):4855–4861. https://doi.org/10.1039/C4AN00978A
  • Urnukhsaikhan E, Bold BE, Gunbileg A, et al. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from carduus crispus. Sci Rep. 2021;11(1):21047. https://doi.org/10.1038/s41598-021-00520-2.
  • Zhang XF, Liu ZG, Shen W, et al. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. IJMS 2016;17(9):1534. https://doi.org/10.3390/ijms17091534.
  • Peiris MK, Gunasekara CP, Jayaweera PM, et al. Biosynthesized silver nanoparticles: are they effective antimicrobials? Mem Inst Oswaldo Cruz. 2017;112(8):537–543. https://doi.org/10.1590/0074-02760170023.
  • Kumari SC, Padma PN. A facile, green approach for enhanced synthesis of silver nanoparticles by Weissella confusa produced dextran. Plant Arch. 2020;20:1598–1602.
  • Deepak V, Umamaheshwaran PS, Guhan K, et al. Synthesis of gold and silver nanoparticles using purified URAK. Colloids Surf B Biointerfaces 2011;86(2):353–358. https://doi.org/10.1016/j.colsurfb.2011.04.019.
  • Bruna T, Maldonado-Bravo F, Jara P, et al. Silver nanoparticles and their antibacterial applications. IJMS 2021;22(13):7202. https://doi.org/10.3390/ijms22137202.
  • Fayaz M, Balaji K, Girilal M, et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 2010;6(1):103–109. https://doi.org/10.1016/j.nano.2009.04.006.
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16(10):2346–2353. https://doi.org/10.1088/0957-4484/16/10/059.
  • Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed. 2020;15:2555–2562. https://doi.org/10.2147/IJN.S246764.
  • Dakal TC, Kumar A, Majumdar RS, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831. https://doi.org/10.3389/fmicb.2016.01831.
  • Durán N, Durán M, de Jesus MB, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 2016;12(3):789–799. https://doi.org/10.1016/j.nano.2015.11.016.
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–182. https://doi.org/10.1016/j.jcis.2004.02.012.
  • Lin L, Chi J, Yan Y, et al. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B. 2021;11(9):2609–2644. https://doi.org/10.1016/j.apsb.2021.07.014.
  • Rajagopal M, Walker S. Envelope structures of gram-positive bacteria. Curr Top Microbiol Immunol. 2017;404:1–44. https://doi.org/10.1007/82_2015_5021.
  • Gonzalez DJ, Haste NM, Hollands A, et al. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology (Reading) 2011;157(Pt 9):2485–2492. https://doi.org/10.1099/mic.0.048736-0.
  • López-Heras M, Theodorou IG, Leo BF, et al. Towards understanding the antibacterial activity of Ag nanoparticles: electron microscopy in the analysis of the materials-biology interface in the lung. Environ Sci Nano. 2015;2(4):312–326. https://doi.org/10.1039/C5EN00051C.
  • Ruden S, Hilpert K, Berditsch M, et al. Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Agents Chemother. 2009;53(8):3538–3540. https://doi.org/10.1128/AAC.01106-08.
  • Vazquez-Muñoz R, Meza-Villezcas A, Fournier PGJ, et al. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One 2019;14(11):e0224904. https://doi.org/10.1371/journal.pone.0224904.
  • Skóra B, Krajewska U, Nowak A, et al. Noncytotoxic silver nanoparticles as a new antimicrobial strategy. Sci Rep. 2021;11(1):13451. https://doi.org/10.1038/s41598-021-92812-w.
  • Liu X, Chen JL, Yang WY, et al. Biosynthesis of silver nanoparticles with antimicrobial and anticancer properties using two novel yeasts. Sci Rep. 2021;11(1):15795. https://doi.org/10.1038/s41598-021-95262-6.
  • Hemlata, Meena PR, Singh AP, Tejavath KK. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 2020;5(10):5520–5528. https://doi.org/10.1021/acsomega.0c00155.