697
Views
0
CrossRef citations to date
0
Altmetric
Articles

Green synthesised CuNPs using Alhagi maurorum extract and its ability to amelioration of Mycoplasma pneumoniae infected pneumonia mice model

, , , , , , , , , , & show all
Pages 585-598 | Received 14 Jun 2022, Accepted 13 Jul 2022, Published online: 28 Sep 2022

References

  • Hausner M, Schamberger A, Naumann W, et al. Development of protective anti-Mycoplasma pneumonia antibodies after immunization of guinea pigs with the combination of a P1-P30 chimeric recombinant protein and chitosan. Microb Pathog. 2013;64:23–32.
  • Zhu Z, Xu W, Abernathy ES, et al. Comparison of four methods using throat swabs to confirm rubella virus infection. J Clin Microbiol. 2007;45(9):2847–2852.
  • Yamazaki T, Narita M, Sasaki N, et al. Comparison of PCR for sputum samples obtained by induced cough and serological tests for diagnosis of mycoplasma pneumonia infection in children. Clin Vaccine Immunol. 2006;13(6):708–710.
  • Pitcher D, Chalker VJ, Sheppard C, et al. Real-time detection of mycoplasma pneumonia in respiratory samples with an internal processing control. J Med Microbiol. 2006;55(Pt 2):149–155.
  • Saharan P, Dhingolia S, Khatri P, et al. Loop-mediated isothermal amplification (LAMP) based detection of bacteria: a review. Afr J Biotechnol. 2014;13(19):1920–1928.
  • Buist AS, McBurnie MA, Vollmer WM, et al. International variation in the prevalence of COPD (the BOLD study): a population-based prevalence study. Lancet. 2007;370(9589):741–750.
  • Barker BL, Haldar K, Patel H, et al. Association between pathogens detected using quantitative polymerase chain reaction with airway inflammation in COPD at stable state and exacerbations. Chest. 2015;147(1):46–55.
  • Marin A, Monso E, Garcia-Nunez M, et al. Variability and effects of bronchial colonization in patients with moderate COPD. Eur Respir J. 2010;35(2):295–302.
  • Fricker M, Deane A, Hansbro PM. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov. 2014;9(6):629–645.
  • Bebear C, Pereyre S, Peuchant O. Mycoplasma pneumonia: susceptibility and resistance to antibiotics. Future Microbiol. 2011;6(4):423–431.
  • Bebear C, Raherison C, Nacka F, et al. Comparison of mycoplasma pneumonia infections in asthmatic children versus asthmatic adults. Pediatr Infect Dis J. 2014;33(3):e71–e5.
  • Becker A, Kannan TR, Taylor AB, et al. Structure of CARDS toxin, a unique ADP-ribosylating and vacuolating cytotoxin from mycoplasma pneumonia. Proc Natl Acad Sci USA. 2015;112(16):5165–5170.
  • Daxboeck F, Blacky A, Seidl R, et al. Diagnosis, treatment, and prognosis of mycoplasma pneumonia childhood encephalitis: systematic reviewof58cases. J Child Neurol. 2004;19(11):865–871.
  • Domenech C, Leveque N, Lina B, et al. Role of mycoplasma pneumonia in pediatric encephalitis. Eur J Clin Microbiol Infect Dis. 2009;28(1):91–94.
  • Dorigo-Zetsma JW, Wilbrink B, Nat H, et al. Results of molecular detection of mycoplasma pneumonia among patients with acute respiratory infection and in their household contacts reveals children as human reservoirs. J Infect Dis. 2001;183(4):675–678.
  • Hemmati S, Rashtiani A, Zangeneh MM, et al. Green synthesis and characterization of silver nanoparticles using fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron. 2019;158:8–14.
  • Seydi N, Mahdavi B, Paydarfard S, et al. Preparation, characterization, and assessment of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing properties of titanium nanoparticles using aqueous extract of Ziziphora clinopodioides Lam leaves. Appl Organometal Chem. 2019;33(9):e5009.
  • Zhaleh M, Zangeneh A, Goorani S, et al. In vitro and in vivo evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing properties of gold nanoparticles produced via a green chemistry synthesis using Gundelia tournefortii L. as a capping and reducing agent. Appl Organometal Chem. 2019;33(9):e5015.
  • Zangeneh MM, Ghaneialvar H, Akbaribazm M, et al. Novel synthesis of falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. J Photochem Photobiol B Biol. 2019;197:111556.
  • Zangeneh MM, Joshani Z, Zangeneh A, et al. Stachys lavandulifolia flower, and their cytotoxicity, antioxidant, antibacterial and cutaneous wound‐healing properties. Appl Organometal Chem. 2019;33(9):e5016.
  • Hamed A, Perrone A, Mahalel U, et al. Oleanane glycosides from the roots of alhagi maurorum. Phytochem Lett. 2012;5(4):782–787.
  • M. Al-Saleem MS, Al-Wahaib LH, Abdel-Mageed WM, et al. Antioxidant flavonoids from alhagi maurorum with hepatoprotective effect. Phcog Mag. 2019;15(65):592.
  • Akbar S. Handbook of 200 medicinal plants: a comprehensive review of their traditional medical uses and scientific justifications. 2020. Cham, Switzerland: Spriger.
  • Olas B, Hamed AI, Oleszek W, et al. Comparison of biological activity of phenolic fraction from roots of alhagi maurorum with properties of commercial phenolic extracts and resveratrol. Platelets. 2015;26(8):788–794.
  • Ahmad N, Shinwari ZK, Hussain J, et al. Phytochemicals, antibacterial and antioxidative investigations of alhagi maurorum medik. Pak J Bot. 2015;47:121–124.
  • Laghari AH, Ali Memon A, Memon S, et al. Determination of free phenolic acids and antioxidant capacity of methanolic extracts obtained from leaves and flowers of camel thorn (alhagi maurorum). Nat Prod Res. 2012;26(2):173–176.
  • Awaad Amani A, Maitland D, Soliman G. Antiulcerogenic activity of alhagi maurorum. Pharm Biol. 2006;44(4):292–296.
  • Laghari AH, Memon S, Nelofar A, et al. Alhagi maurorum: a convenient source of lupeol. Ind Crops Prod. 2011;34(1):1141–1145.
  • Kumar PV, Shameem U, Kollu P, et al. Green synthesis of copper oxide nanoparticles using aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. BioNanoSci. 2015;5(3):135–139.
  • Liu H, Wang G, Liu J, et al. Green synthesis of copper nanoparticles using cinnamomum zelanicum extract and its applications as a highly efficient antioxidant and anti-human lung carcinoma. J Exp Nanosci. 2021;16(1):410–423. ‏
  • Liu R, Ma SG, Liu YX, et al. Albizosides D and E, two new cytotoxic triterpenesaponins from albiziachinensis. Carbohydr Res. 2010;345(13):1877–1881.
  • Ghidan AY, Al-Antary TM, Awwad AM. Green synthesis of copper oxide nanoparticles using punica granatum peels extract: Effect on green peach aphid. Environ Nanotechnol Monit Manag. 2016;6:95–98. ‏
  • Rajesh KM, Ajitha B, Reddy YAK, et al. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik. 2018;154:593–600. ‏
  • Ijaz F, Shahid S, Khan SA, et al. Green synthesis of copper oxide nanoparticles using abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop J Pharm Res. 2017;16(4):743–753. ‏
  • Sorbiun M, Mehr ES, Ramazani A, et al. Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. Int J Environ Res. 2018;12(1):29–37. ‏
  • Gu J, Aidy A, Goorani S. Anti-human lung adenocarcinoma, cytotoxicity, and antioxidant potentials of copper nanoparticles green-synthesized by calendula officinalis. J Exp Nanosci. 2022;17(1):285–296.
  • Sebeia N, Jabli M, Ghith A. Biological synthesis of copper nanoparticles, using nerium oleander leaves extract: characterization and study of their interaction with organic dyes. Inorg Chem Commun. 2019;105:36–46. ‏
  • Punniyakotti P, Panneerselvam P, Perumal D, et al. Anti-bacterial and anti-biofilm properties of green synthesized copper nanoparticles from cardiospermum halicacabum leaf extract. Bioprocess Biosyst Eng. 2020;43(9):1649–1657. ‏
  • Mahdavi B, Paydarfard S, Rezaei‐Seresht E, et al. Green synthesis of NiONPs using trigonella subenervis extract and its applications as a highly efficient electrochemical sensor, catalyst, and antibacterial agent. Appl Organomet Chem. 2021;35(8):e6264.
  • Mahdavi B, Paydarfard S, Zangeneh MM, et al. Assessment of antioxidant, cytotoxicity, antibacterial, antifungal, and cutaneous wound healing activities of green synthesized manganese nanoparticles using ziziphora clinopodioides lam leaves under in vitro and in vivo condition. Appl Organometal Chem. 2020;34(1):e5248.
  • Mahdavi B, Saneei S, Qorbani M, et al. Ziziphora clinopodioides lam leaves aqueous extract mediated synthesis of zinc nanoparticles and their antibacterial, antifungal, cytotoxicity, antioxidant, and cutaneous wound healing properties under in vitro and in vivo conditions. Appl Organometal Chem. 2019;33(11):e5164.
  • Baghayeri M, Mahdavi B, Hosseinpor‐Mohsen Abadi Z, et al. Green synthesis of silver nanoparticles using water extract of salvia leriifolia: Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Appl Organometal Chem. 2018;32(2):e4057.
  • Mahendran D, Kavi Kishor PB, Geetha N, et al. Efficient antibacterial/biofilm, anti-cancer and photocatalytic potential of titanium dioxide nanocatalysts green synthesised using gloriosa superba rhizome extract. J Exp Nanosci. 2021; 16(1):11–30. ‏
  • Vaidehi D, Bhuvaneshwari V, Bharathi D, et al. Antibacterial and photocatalytic activity of copper oxide nanoparticles synthesized using solanum lycopersicum leaf extract. Mater Res Express. 2018;5(8):085403.
  • Khani R, Roostaei B, Bagherzade G, et al. Green synthesis of copper nanoparticles by fruit extract of ziziphus spina-christi (L.) willd.: application for adsorption of triphenylmethane dye and antibacterial assay. J Mol Liq. 2018;255:541–549.
  • Sulaiman GM, Tawfeeq AT, Jaaffer MD. Biogenic synthesis of copper oxide nanoparticles using olea europaea leaf extract and evaluation of their toxicity activities: an in vivo and in vitro study. Biotechnol Prog. 2018;34(1):218–230.
  • Kaur P, Thakur R, Chaudhury A. Biogenesis of copper nanoparticles using peel extract of punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev. 2016;9(1):33–38.
  • Cheirmadurai K, Biswas S, Murali R, et al. Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources. RSC Adv. 2014;4(37):19507–19511.
  • Yuan C, Jiang B, Xu X, et al. Anti-human ovarian cancer and cytotoxicity effects of nickel nanoparticles green-synthesized by alhagi maurorum leaf aqueous extract. J Exp Nanosci. 2022;17(1):113–125. (2020)‏
  • Bai J, Gongsun X, Xue L, et al. Introducing a modern chemotherapeutic drug formulated by iron nanoparticles for the treatment of human lung cancer. J Exp Nanosci. 2021;16(1):397–409. ‏
  • Shi S, Zhang X, Zhou Y, et al. Immunosuppression reduces lung injury caused by mycoplasma pneumonia infection. Sci Rep. 2019;9(1):7147.
  • Guo L, Liu F, Lu MP, et al. Increased T cell activation in BALF from children with mycoplasma pneumoniapneumonia. Pediatr Pulmonol. 2015;50(8):814–819.
  • Chen Z, Shao X, Dou X, et al. Role of the mycoplasma pneumonia/interleukin-8/neutrophil axis in the pathogenesis of pneumonia. PLoS One. 2016;11(1):e146377.
  • Boddeke EW. Involvement of chemokines in pain. Eur J Pharmacol. 2001;429(1–3):115–119.
  • Hassan I, Husain FM, Khan RA, et al. Ameliorative effect of zinc oxide nanoparticles against potassium bromate-mediated toxicity in Swiss albino rats. Environ Sci Pollut Res Int. 2019;26(10):9966–9980.
  • Mahmoud ARH, Shalaby NMM. Ameliorative effect of zinc oxide nanoparticles on nicotine induced testicular dysfunction; biochemical and histological study. Toxicol Environ Health Sci. 2019;11(2):104–113.
  • Afifi M, Almaghrabi OA, Kadasa NM. Ameliorative effect of zinc oxide nanoparticles on antioxidants and sperm characteristics in streptozotocin-induced diabetic rat testes. Biomed Res Int. 2015;2015(2015):153573.