1,501
Views
2
CrossRef citations to date
0
Altmetric
Articles

Cytotoxic effect of cobalt oxide–graphene oxide nanocomposites on melanoma cell line

, , &
Pages 509-521 | Received 08 Jun 2022, Accepted 11 Aug 2022, Published online: 01 Sep 2022

References

  • K C, Thomas B. Cancer trends and burden in India. Lancet Oncol. 2018;19(12):e663.
  • Sharma R. An examination of colorectal cancer burden by socioeconomic status: evidence from GLOBOCAN 2018. EPMA J. 2020;11(1):95–117.
  • Sun P, Jin M, Ding L, et al. The Israeli journal of aquaculture-bamidgeh. 2017;69:1421.
  • Al-Smadi M, Arqub OA. Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimates. Appl Maths Comput. 2019;342:280–294.
  • Zhai X, Zhou Z, Tin C. Semi-supervised learning for ECG classification without patient-specific labelled data. Expert Syst Appl. 2020;158:113411.
  • Mishra A, Mohanty T. Structural and morphological study of magnetic Fe3O4/ reduced graphene oxide nanocomposites. Mater Today Proc. 2016;3(6):1576–1581.
  • Shaheen S, Iqbal A, Ikram M, et al. Graphene oxide-ZnO nanorods for efficient dye degradation, antibacterial and in-silico analysis. Appl Nanosci. 2022;12(2):165–177.
  • Alves NM, Mano JF. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol. 2008;43(5):401–414.
  • Ali M, Ikram M, Ijaz M, et al. Green synthesis and evaluation of n-type ZnO nanoparticles doped with plant extract for use as alternative antibacterials. Appl Nanosci. 2020;10(10):3787–3803.
  • Rashid M, Ikram M, Haider A, et al. Photocatalytic, dye degradation, and bactericidal behaviour of Cu-doped ZnO nanorods and their molecular docking analysis. Dalton Trans. 2020;49(24):8314–8330. Jun
  • Saleem A, Imran M, Shahzadi A, et al. Materials research express. Mater Res Express. 2018;2019;6(1):015003.
  • Wahab A, Imran M, Ikram M, et al. Dye degradation property of cobalt and manganese doped iron oxide nanoparticles. Appl Nanosci. 2019;9(8):1823–1832.
  • Choi YJ, Gurunathan S, Kim JH. Graphene oxide–silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): a novel approach for cancer therapy. IJMS. 2018;19(3):710. 1
  • Almeer RS, Alarifi S, Alkahtani S, et al. The potential hepatoprotective effect of royal jelly against cadmium chloride-induced hepatotoxicity in mice is mediated by suppression of oxidative stress and upregulation of Nrf2 expression. Biomed Pharmacother. 2018;106:1490–1498.
  • Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. IJMS. 2019;20(2):449.
  • Parnianchi F, Nazari M, Maleki J, et al. Combination of graphene and graphene oxide with metal and metal oxide nanoparticles in fabrication of electrochemical enzymatic biosensors. Int Nano Lett. 2018;8(4):229–239.
  • Han W, Ren L, Qi X, et al. Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation. Appl Surface Sci. 2014;299:12–18.
  • Mishra A, Singh VK, Mohanty T. Coexistence of interfacial stress and charge transfer in graphene oxide-based magnetic nanocomposites. J Mater Sci. 2017;52(13):7677–7687.
  • Hong L, Yao H, Wu Z, et al. Eco‐compatible solvent‐processed organic photovoltaic cells with over 16% efficiency. Adv Mater. 2019;31(39):1903441. (ev. B 91, 094429 (2015)).
  • Mishra A. Study of organic pollutant removal capacity for magnetite@ graphene oxide nanocomposites. Vacuum. 2018;157:524–529.
  • Compton OC, Nguyen ST. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small. 2010;6(6):711–723.,
  • Paredes JI, Villar-Rodil S, Martínez-Alonso A, et al. Graphene oxide dispersions in organic solvents. Langmuir. 2008;24(19):10560–10564.
  • Mishra A, Kuanr BK, Mohanty T. AIP Conference Proceedings 1832, 050006 2017.
  • Qumar U, Hassan J, Naz S, et al. Silver decorated 2D nanosheets of GO and MoS2 serve as nanocatalyst for water treatment and antimicrobial applications as ascertained with molecular docking evaluation. Nanotechnology. 2021;32(25):255704. 25 10.1088/1361-6528/abe43c. 1 Apr
  • Ikram M, Raza A, Imran M, et al. Hydrothermal synthesis of silver decorated reduced graphene oxide (rGO) nanoflakes with effective photocatalytic activity for wastewater treatment. Nanoscale Res Lett. 2020;15(1):95.
  • Wang X, Yu S, Jin J, et al. Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions. Sci Bull. 2016;61(20):1583–1593.
  • Loh KP, Bao Q, Eda G, et al. Graphene oxide as a chemically tuneable platform for optical applications. Nat Chem. 2010;2(12):1015–1024.
  • Mishra A, Mohanty T. One step synthesis of Fe3O4/GO nanocomposites at 100 °C and its magnetic properties. Integr Ferroelectr. 2017;184(1):178–185.
  • Kavinkumar T, Krishnamoorthy V, Ravikumar V, et al. J Colloid Interface Sci. 2017;505:1125–1133.
  • Shaheen F, Aziz MH, Fatima M, et al. In vitro cytotoxicity and morphological assessments of GO-ZnO against the MCF-7 cells: determination of singlet oxygen by chemical trapping. Nanomaterials. 2018;8(7):539.
  • Sharif S, Murtaza G, Meydan T, et al. Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3 thin films prepared by pulsed laser deposition. Thin Solid Films. 2018;662:83–89.
  • Ali D, Alarifi S, Alkahtani S, et al. Silver-doped graphene oxide nanocomposite triggers cytotoxicity and apoptosis in human hepatic normal and carcinoma cells. Int J Nanomed. 2018;13:5685–5699.
  • Khan GMA, Shaikh H, Alam MS, et al. Effect of chemical treatments on the physical properties of non-woven jute/PLA biocomposites. BioResources. 2015;10(4):7386.
  • Jarestan M, Khalatbari K, Pouraei A, et al. Preparation, characterisation, and anticancer efficacy of novel cobalt oxide nanoparticles conjugated with thiosemicarbazide. 3 Biotech. 2020;10(5):1.
  • Rauwel E, Al-Arag S, Salehi H, et al. Assessing cobalt metal nanoparticles uptake by cancer cells using live Raman spectroscopy. Int J Nanomed. 2020;15:7051–7062.
  • Elkhadragy MF, Al-Olayan EM, Al-Amiery AA, et al. Protective effects of fragaria ananassa extract against cadmium chloride-induced acute renal toxicity in rats. Biol Trace Elem Res. 2018;181(2):378–387.
  • Zacharopoulou N, Tsapara A, Kallergi G, et al. 2020;21:533–540.
  • Zhao Y, Chen S, Sun B, et al. Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction. Sci Rep. 2015;5:7629.
  • Qian C, Guo X, Zhang W, et al. Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction. Microporous Mesoporous Mater. 2019;277:45–51.
  • Pourzare K, Farhadi S, Mansourpanah Y. Graphene oxide/Co3O4 nanocomposite: synthesis, characterization, and its adsorption capacity for the removal of organic dye pollutants from water. Acta Chim Slov. 2017;64(4):945–958.
  • Mishra A, Sharma V, Mohanty T, et al. Microstructural and magnetic properties of rGO/MnFe2O4 nanocomposites; relaxation dynamics. J Alloys Compd. 2019;790:983–991.
  • Wang T, Wang J, Yang Y, et al. Co3O4/reduced graphene oxide nanocomposites as effective phosphotriesterase mimetics for degradation and detection of paraoxon. Ind Eng Chem Res. 2017;56(34):9762–9769.
  • Mishra A, Mishra A. Two fold characteristics of swift heavy ion irradiation on Co3O4/RGO nanocomposites. Appl Surf Sci. 2019;486:474–481.
  • Halkai KR, Mudda JA, Shivanna V, et al. Cytotoxicity evaluation of fungal-derived silver nanoparticles on human gingival fibroblast cell line: an in vitro study. J Conserv Dent. 2019;22(2):160.
  • Ahmadi S, Fazilati M, Mousavi SM, et al. Anti-bacterial/fungal and anti-cancer performance of green synthesised Ag nanoparticles using summer savoury extract. J Exp Nanosci. 2020;15(1):363–380.
  • Xu X, Shen J, Qin J, et al. Cytotoxicity of bacteriostatic reduced graphene Oxide-Based copper oxide nanocomposites. JOM. 2019;71(1):294–301.
  • Alarifi S, Ali D, Alkahtani S, et al. Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol Trace Elem Res. 2014;159(1–3):416–424.
  • Mahendran D, Kavi Kishor PB, Geetha N, et al. Efficient antibacterial/biofilm, anti-cancer and photocatalytic potential of titanium dioxide nanocatalysts green synthesised using gloriosa superba rhizome extract. J Exp Nanosci. 2021;16(1):11–30.
  • Yuan C, Jiang B, Xu X, et al. Anti-human ovarian cancer and cytotoxicity effects of nickel nanoparticles green-synthesised by Alhagi maurorum leaf aqueous extract. J Exp Nanosci. 2022;17(1):113–125.
  • Zhang H, Li T, Luo W, et al. Green synthesis of Ag nanoparticles from Leucus aspera and its application in anticancer activity against alveolar cancer. J Exp Nanosci. 2022;17(1):47–60.