2,097
Views
1
CrossRef citations to date
0
Altmetric
Article

Exploiting of green synthesized silver nanoparticles using Capparis spinosa L. Fruit for spectrophotometric determination of diphenhydramine HCl in pure forms and commercial products

ORCID Icon, , , & ORCID Icon
Article: 2161525 | Received 20 Nov 2022, Accepted 17 Dec 2022, Published online: 02 Jan 2023

References

  • Sharma A, Hamelin BA. Classic histamine H1 receptor antagonists: a critical review of their metabolic and pharmacokinetic fate from a bird’s eye view. Curr Drug Metab. 2003;4(2):105–129. ‏
  • Carson S, Lee N, Thakurta S. 2010.‏ Drug class review: newer antihistamines: Final report update 2. Portland, OR: Oregon Health & Science University. http://www.ncbi.nlm.nih.gov/books/NBK50558/
  • Cartwright AC. 2016. The british pharmacopoeia, 1864 to 2014: medicines, international standards and the state. 1st Ed. United Kongdom: Routledge.
  • Marzouk HM, Ibrahim EA, Hegazy MA, et al. Sustainable liquid chromatographic determination and purity assessment of a possible add-on triple-action over-the-counter pharmaceutical combination in COVID-19. Microchem J. 2022;178:107400. ‏
  • Njuguna N. M, Abuga KO, Kamau FN, et al. A liquid chromatography method for simultaneous determination of diphenhydramine, promethazine, chlorpheniramine and ephedrine in cold-cough syrups. Pharm Chem J. 2017;51(2):153–158. ‏
  • Nualdee K, Buain R, Janchawee B, et al. A stir bar sorptive extraction device coupled with a gas chromatography flame ionization detector for the determination of abused prescription drugs in lean cocktail samples. Anal Methods. 2022;14(26):2557–2568. ‏
  • Phonchai A, Pinsrithong S, Janchawee B, et al. Simultaneous determination of abused prescription drugs by simple dilute-and-shoot gas chromatography–flame ionization detection (GC-FID). Anal Lett. 2021;54(4):716–728. ‏
  • Kim JY, Choi JY, Yoon CY, et al. L.C.–MS/MS monitoring of 22 illegal antihistamine compounds in health food products from the Korean market. J Korean Soc Appl Biol Chem. 2015;58(1):137–147. ‏
  • Ghalehno MH, Parvizi A, Mirzaei M. A novel electrochemical sensor for the determination of diphenylhydramine hydrochloride based on a carbon paste electrode (CPE) modified with ferrite–cobalt–silica/ionic liquid nanocomposite. Russ J Electrochem. 2022;58(5):381–390. ‏
  • Marzouk HM, Ibrahim EA, Hegazy MA, et al. A reliable electrochemical sensor based on functionalized magnetite nanoparticles for over‐the‐counter allergy medication abuse sensing in biological fluids. Electroanalysis. 2022;34(3):552–560. ‏
  • Jasim AN, Turkey N. S, Abd-Alrazack HF. Design a continuous microfluidic flow cell for turbidimetric-flow injection technology: a new approach for routine analysis of active pharmaceutical formulations. AMECJournal. 2022;5(02):90–104. ‏
  • Chunling Y, Yuhai T, Xiaonian H, et al. Flow injection chemiluminescence analysis of diphenhydramine hydrochloride and chlorpheniramine maleate. Instrumentation Science & Technology. 2006;34(5):529–536.
  • Mbaye AR, Foulon C, Lecoeur M. Capillary electrophoresis as a versatile tool for quality control and epidermis permeation studies of transdermal formulations. J Pharm Biomed Anal. 2021;193:113732. ‏
  • Akram ME, Moftah AM. Spectrophotometric determination of diphenhydramine hydrochloride in pharmaceutical preparations and biological fluids via ion-pair formation. Arabian J Chem. 2010;3(4):265–270.
  • Zayed MA, El-Habeeb AA. Spectroscopic study of structure of diphenhydramine drug and its products obtained via reactions with tetracynoethylene and iodine reagents and applications. Drug Test Anal. 2010;2(2):55–69.
  • Hammad SF, El‐Khateeb BZ, El‐Malla SF. Micelle‐enhanced spectrofluorimetric determination of diphenhydramine: application to human plasma and its simultaneous determination with naproxen in pharmaceutical tablets. Luminescence. 2021;36(3):733–741. ‏
  • Saad RA, Salim MM, Hammad SF. Synchronous spectrofluorometric methods for simultaneous determination of diphenhydramine and ibuprofen or phenylephrine in combined pharmaceutical preparations. Luminescence. 2020;35(4):550–560.
  • Shin TH, Cheon J. Synergism of nanomaterials with physical stimuli for biology and medicine. Acc Chem Res. 2017;50(3):567–572. ‏
  • Numan RS, Abdoon FM. 2020. Utility of silver nanoparticles as coloring sensor for determination of levofloxacin in its pure form and pharmaceutical formulations using spectrophotometric technique In AIP conference proceedings; Vol. 2213, No. 1, p. 20103. AIP Publishing LLC.
  • Dabhane H, Ghotekar S, Zate M, et al. Green synthesis of MgO nanoparticles using aqueous leaf extract of ajwain (Trachyspermum ammi) and evaluation of their catalytic and biological activities. Inorg Chem Commun. 2022;138:109270. ‏
  • Fernandez-Baldo MA, Oetega FG, Pareira SV, et al. Nanostructured platform integrated into a microfluidic immunosensor coupled to laser-induced fluorescence for the epithelial cancer biomarker determination. Michrochem J. 2016;128:18–25.
  • Ryvolova M, Chomoucka J, Drbohlavova J, et al. Modern micro and nanoparticle-based imaging techniques. Sensors (Basel). 2012;12(11):14792–14820.
  • Singh N. B, Jain P, De A, et al. Green synthesis and applications of nanomaterials. Curr Pharm Biotechnol. 2021;22(13):1705–1747. ‏
  • Abdoon FM, Atawy HM. Prospective of microwave-assisted and hydrothermal synthesis of carbon quantum dots/silver nanoparticles for spectrophotometric determination of losartan potassium in pure form and pharmaceutical formulations. Mater Today: proc. 2021;42:2141–2149. ‏
  • Sivanesan I, Gopal J, Muthu M, et al. Green synthesized chitosan/chitosan nanoforms/nanocomposites for drug delivery applications. Polymers. 2021;13(14):2256. ‏
  • Zarei M, Seyedi N, Maghsoudi S, et al. Green synthesis of Ag nanoparticles on the modified graphene oxide using capparis spinosa fruit extract for catalytic reduction of organic dyes. Inorg Chem Commun. 2021;123:108327. ‏
  • Ebrahimi K, Madani M, Ashrafi B, et al. Antifungal properties of silver nanoparticles synthesized from capparis spinosa fruit. Res Mol Med. 2019;7(4):43–50. ‏
  • Azizian Shermeh O, Valizadeh M, Valizadeh J, et al. Phytochemical investigation and phytosynthesis of silver nanoparticles using aqueous extract of Capparis spinosa L. Modares J Biotechnol. 2017;8(1):80–90. ‏
  • Niluxsshun MCD, Masilamani K, Mathiventhan U. Green synthesis of silver nanoparticles from the extracts of fruit peel of Citrus tangerina, Citrus sinensis, and citrus Limon for antibacterial activities. Bioinorg Chem Appl. 2021;2021:1–8.
  • Skiba MI, Vorobyova VI. Synthesis of silver nanoparticles using orange peel extract prepared by plasmochemical extraction method and degradation of methylene blue under solar irradiation. Adv Mater Sci Eng. 2019;2019:1–8.
  • Zielińska A, Skwarek E, Zaleska A, et al. Preparation of silver nanoparticles with controlled particle size. Procedia Chem. 2009;1(2):1560–1566. ‏
  • Tagnaout I, Zerkani H, Mahjoubi M, et al. Phytochemical study, antibacterial and antioxidant activities of extracts of capparis spinosa L. Inter J Pharmaco Phytochem Research. 2016;8(12):1993–2005.
  • Agasti N, Kaushik NK. One pot synthesis of crystalline silver nanoparticles. Amer J Nanomater. 2014;2(1):4–7.
  • ICH, I. 2005. Q2 (R1): validation of analytical procedures: text and methodology. In International conference on harmonization, Geneva.‏ November.
  • Abdoon F, Bichan MJ, Mohamed Ibrahim A, et al. 2022). Ternary complexation process for new spectrophotometric assay of levodopa using Ni (II) and 2, 3-Diaminopyridine. Adv Mater Sci Eng. 2022;2022:1–8.
  • Miller JC, Miller JN. 1993. Statistics for analytical chemistry. 3rd Ed. New York: ellis Horwood PTR Prentice Hall.