1,727
Views
3
CrossRef citations to date
0
Altmetric
Article

The preparation of Ag@AgCl photocatalytic material based on the photocatalysis material CA+ and degradation of tetracycline

, &
Article: 2162509 | Received 30 Nov 2022, Accepted 19 Dec 2022, Published online: 11 Jan 2023

References

  • Xue X, Chen X, Zhang Z. Enhancement of redox capacity derived from O-doping of g-C3N4/WO3 nanosheets for the photocatalytic degradation of tetracycline under different dissolved oxygen concentration. Dalton Trans. 2022;51(3):1086–1098.
  • Li J, Wang B, Pang Y. Fabrication of 0D/1D Bi2MoO6/Bi/TiO2 heterojunction with effective interfaces for boosted visible-light photocatalytic degradation of tetracycline. Colloids Surf A: Physicochem Eng Aspects. 2022;638:128697.
  • Zhu MT, Tonni AK, You YP. Fabrication, characterization, and application of ternary magnetic recyclable Bi2WO6/BiOI@Fe3O4 composite for photodegradation of tetracycline in aqueous solutions. J Environ Manage. 2020;270:110839.
  • Yuan J, Pudukudy M, Hu T, et al. CeOx-coupled MIL-125-derived C-TiO2 catalysts for the enhanced photocatalytic abatement of tetracycline under visible light irradiation. Appl Surf Sci. 2021;557:149829.
  • Krishnan D, Amanulla B, Vellaichamy B. Photocatalytic degradation of tetracycline under visible light using TiO2@sulfur doped carbon nitride nanocomposite synthesized via in-situ method. J Environ Chem Eng. 2021;9(4):105560.
  • Nekouei F, Nekouei S, Noorizadeh H. Enhanced adsorption and catalytic oxidation of ciprofloxacin by an Ag/AgCl@N-doped activated carbon composite. J Phys Chem Solids. 2018;114:36–44.
  • Tang Y, Jiang Z, Xing G, et al. Efficient Ag@AgCl cubic cage photo catalysts profit from ultrafast plasmon-induced electron transfer processes. Adv Funct Mater. 2013;23(23):2932–2940.
  • Ma X, Dai Y, Yu L, et al. Electron–hole pair generation of the visible-light plasmonic photo catalyst Ag@AgCl: enhanced optical transitions involving mid gap defect states of AgCl. J Phys Chem C. 2014;118(23):12133–12140.
  • Fan G, Luo J, Guo L, et al. Doping Ag/AgCl in zeolitic imidazolate framework-8 (ZIF-8) to enhance the performance of photodegradation of methylene blue. Chemosphere. 2018;209:44–52.
  • Song B, Tang Q, Li Q, et al. Template assisted synthesis of Ag/AgBr/AgCl hollow microspheres with heterojunction structure as highly activity and stability photocatalyst. Mater Lett. 2017;209:251–254.
  • Xu X, Wang M, Pei Y, et al. SiO2@Ag/AgCl: a low-cost and highly efficient plasmonic photocatalyst for degrading rhodamine B under visible light irradiation. RSC Adv. 2014;4(110):64747–64755.
  • Sohrabnezhad SH, Pourahmad A. As-synthesis of nanostructure AgCl/Ag/MCM-41 composite. Spectrochim Acta A Mol Biomol Spectrosc. 2012;86:271–275.
  • Tang Y, Subramaniam VP, Lau TH, et al. In situ formation of large-scale Ag/AgCl nanoparticles on layered titanate honeycomb by gas phase reaction for visible light degradation of phenol solution. Appl Catal B. 2011;106(3–4):577–585.
  • Liu SJ, Li Y, Li L. Enhanced stability and mechanical strength of sodium alginate composite films. Carbohydr Polym. 2017;160:62–70.
  • Song D, Park S-J, Kang HW, et al. Recovery of lithium(I), strontium (II), and lanthanum (III) using Ca–alginate beads. J Chem Eng Data. 2013;58(9):2455–2464.
  • Gao Q, Wang X, Wang H, et al. Sulfhydryl-modified sodium alginate film for lead-ion adsorption. Mater Lett. 2019;254(25):149–153.
  • Dong H, Chen G, Sun J. A novel high-efficiency visible-light sensitive Ag2CO3 photocatalyst with universal photodegradation performances: simple synthesis, reaction mechanism and first-principles study. Appl Catal B. 2013;134:46–54.
  • Li D, Li W, Zhang J. Al doped MoS2 monolayer: a promising low-cost single atom catalyst for CO oxidation. Appl Surf Sci. 2019;484:1297–1303.
  • Wang P, Huang B, Qin X, et al. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem. 2008;120(41):8049–8051.
  • Asadi S, Eris S, Azizian S. Alginate-based hydrogel beads as a biocompatible and efficient adsorbent for dye removal from aqueous solutions. ACS Omega. 2018;3(11):15140–15148.
  • Liu K-K, Tadepalli S, Wang Z, et al. Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots. Analyst. 2017;142(23):4536–4543.
  • Schweinsberg DP, Hope GA, Trueman A, et al. An electrochemical and SERS study of the action of polyvinylpyrrolidone and polyethylenimine as inhibitors for copper in aerated H2SO4. Corros Sci. 1996;38(4):587–599.
  • Bi Y, Ouyang S, Cao J, et al. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Phys Chem Chem Phys. 2011;13(21):10071–10075.
  • Wu H, Xie H, He G, et al. Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite. Appl Clay Sci. 2016;119:161–169.
  • An CH, Peng S, Sun YG. Fast synthesis of sunlight-driven AgCl: Ag plasmonic nanophotocatalyst. Adv Mater. 2010;22(23):2570–2574.
  • Wang P, Huang B, Qin X, et al. Ag@ AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed Engl. 2008;47(41):7931–7933.