728
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development and characterisation of MMT-reinforced polyacrylonitrile-pullulan nanofibers for controlled permeation of isotretinoin

, , , , , , & ORCID Icon show all
Article: 2221826 | Received 22 Dec 2022, Accepted 31 May 2023, Published online: 19 Jul 2023

References

  • Ibrahim NA, Kaleem S, Khan AK, et al. Development and butyrylcholinesterase/monoamine oxidase inhibition potential of PVA-Berberis lycium nanofibers. Green Process Synth. 2022;11(1):1–18. doi: 10.1515/gps-2022-0017.
  • Thenmozhi S, Dharmaraj N, Kadirvelu K, et al. Electrospun nanofibers: new generation materials for advanced applications. Mater Sci Eng B. 2017;217:36–48. doi: 10.1016/j.mseb.2017.01.001.
  • Xu L, Zheng X, Cui H, et al. Equilibrium, kinetic, and thermodynamic studies on the adsorption of cadmium from aqueous solution by modified biomass ash. Bioinorg Chem Appl. 2017;2017:3695604. doi: 10.1155/2017/3695604.
  • Pant B, Park M, Park S-J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics. 2019;11(7):305. doi: 10.3390/pharmaceutics11070305.
  • Sun Y, Cheng S, Lu W, et al. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv. 2019;9(44):25712–25729. doi: 10.1039/c9ra05012d.
  • Chen LX, Hu DJ, Xu WF, et al. Identification and determination of fructooligosaccharides in snow chrysanthemum (Coreopsis tinctoria nutt.). World J Tradit Chin Med. 2021;7:78–85.
  • Courtney CM, Goodman SM, McDaniel JA, et al. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat Mater. 2016;15(5):529–534. doi: 10.1038/nmat4542.
  • Fu Y, Li X, Ren Z, et al. Multifunctional electrospun nanofibers for enhancing localized cancer treatment. Small. 2018;14(33):1801183. doi: 10.1002/smll.201801183.
  • Chen Z, Chen Z, Zhang A, et al. Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci. 2016;4(6):922–932. doi: 10.1039/c6bm00070c.
  • Joshi MK, Tiwari AP, Pant HR, et al. In situ generation of cellulose nanocrystals in polycaprolactone nanofibers: effects on crystallinity, mechanical strength, biocompatibility, and biomimetic mineralization. ACS Appl Mater Interfaces. 2015;7(35):19672–19683. doi: 10.1021/acsami.5b04682.
  • Karbownik I, Rac-Rumijowska O, Fiedot-Toboła M, et al. The preparation and characterization of polyacrylonitrile-polyaniline (PAN/PANI) fibers. Materials (Basel). 2019;12(4):664. PMID: 30813349; PMCID: PMC6416742. doi: 10.3390/ma12040664.
  • Lv H, Guo S, Zhang G, et al. Electrospun structural hybrids of acyclovir-polyacrylonitrile at acyclovir for modifying drug release. Polymers (Basel). 2021;13(24):4286. PMID: 34960834; PMCID: PMC8708694. doi: 10.3390/polym13244286.
  • Sarwar MN, Ullah A, Haider MK, et al. Evaluating antibacterial efficacy and biocompatibility of PAN nanofibers loaded with diclofenac sodium salt. Polymers (Basel). 2021;13(4):510. PMID: 33567692; PMCID: PMC7915392. doi: 10.3390/polym13040510.
  • Park JH, Tai GZ, Lee BK, et al. Preparation and investigation of hydrolyzed polyacrylonitrile as a preliminary biomedical hydrogel. Biomater Res. 2015;19(1):20. doi: 10.1186/s40824-015-0043-1.
  • Liu H, Zhang S, Yang J, et al. Preparation, stabilization and carbonization of a novel polyacrylonitrile-based carbon fiber precursor. Polymers. 2019;11(7):1150. doi: 10.3390/polym11071150.
  • Kharaghani D, Gitigard P, Ohtani H, et al. Design and characterization of dual drug delivery based on in-situ assembled PVA/PAN core-shell nanofibers for wound dressing application. Sci Rep. 2019;9(1):12640. doi: 10.1038/s41598-019-49132-x.
  • Tian LX, Li JH, Zhang L, et al. Discrimination of five species of Panax genus and their geographical origin using electronic tongue combined with chemometrics. World J Tradit Chin Med. 2021;7(1):104–110. doi: 10.4103/wjtcm.wjtcm_80_20.
  • Hadrich A, Dulong V, Rihouey C, et al. Biomimetic hydrogel by enzymatic crosslinking of pullulan grafted with ferulic acid. Carbohydr Polym. 2020;250:116967. doi: 10.1016/j.carbpol.2020.116967.
  • Krupskaya VV, Zakusin SV, Tyupina EA, et al. Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions. Minerals. 2017;7(4):49. doi: 10.3390/min7040049.
  • Bahreini Z, Heydari V, Namdari Z. Effects of nano-layered silicates on mechanical and chemical properties of acrylic-melamine automotive clear coat. PRT. 2017;46(5):333–341. doi: 10.1108/PRT-07-2016-0077.
  • Wang ZB, Ma Y, Liu H, et al. Simultaneous determination and pharmacokinetics of tetrandrine, fangchinoline, and cyclanoline in rat plasma by ultra-high performance liquid chromatography‑mass spectrometry after oral administration of stephaniae tetrandrae radix extract. World J Tradit Chin Med. 2021;7(1):130–137. doi: 10.4103/wjtcm.wjtcm_73_20.
  • Hosny KM, Alhakamy NA, Al Nahyah KS. The relevance of nanotechnology, hepato-protective agents in reducing the toxicity and augmenting the bioavailability of isotretinoin. Drug Deliv. 2021;28(1):115–125. doi: 10.1080/10717544.2020.1862365.
  • Rianjanu A, Julian T, Hidayat S, et al. Polyacrylonitrile nanofiber as polar solvent N, N-dimethyl formamide sensor based on quartz crystal microbalance technique. J Phys: Conf Ser. 2018;1011:012067. IOP Publishing: doi: 10.1088/1742-6596/1011/1/012067.
  • Laha B, Maiti S. Design of core-shell stearyl pullulan nanostructures for drug delivery. Mater Today: Proc. 2019;11:620–627. doi: 10.1016/j.matpr.2019.03.019.
  • Hsi S-L, Surman P, Al-Kassas R. Development of a stability-indicating UPLC method for determination of isotretinoin in bulk drug. Pharm Dev Technol. 2019;24(2):189–198. doi: 10.1080/10837450.2018.1454469.
  • Dodero A, Alloisio M, Vicini S, et al. Preparation of composite alginate-based electrospun membranes loaded with ZnO nanoparticles. Carbohydr Polym. 2020;227:115371. doi: 10.1016/j.carbpol.2019.115371.
  • Gupta S, Wairkar S, Bhatt LK. Isotretinoin and α-tocopherol acetate-loaded solid lipid nanoparticle topical gel for the treatment of acne. J Microencapsul. 2020;37(8):557–565. doi: 10.1080/02652048.2020.1823499.
  • David SRN, Hui MS, Pin CF, et al. Formulation and in vitro evaluation of ethosomes as vesicular carrier for enhanced topical delivery of isotretinoin. Int J Drug Deliv. 2013;5:28.
  • Patel MR, Patel RB, Parikh JR, et al. Novel isotretinoin microemulsion-based gel for targeted topical therapy of acne: formulation consideration, skin retention and skin irritation studies. Appl Nanosci. 2016;6(4):539–553. doi: 10.1007/s13204-015-0457-z.
  • Brinckmann JA, Cunningham AB, V. Harter DE. Reviewing threats to wild Rhodiola sachalinensis, a medicinally valuable yet vulnerable species. World J Tradit Chin Med. 2021;7(3):299–306. doi: 10.4103/wjtcm.wjtcm_47_21.
  • Farah H, Brown M, McAuley WJ. Heat enhanced follicular delivery of isotretinoin to the skin. Pharm Res. 2019;36(8):1–14. doi: 10.1007/s11095-019-2659-7.
  • Raza K, Singh B, Singal P, et al. Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf B Biointerfaces. 2013;105:67–74. doi: 10.1016/j.colsurfb.2012.12.043.
  • Ghaghelestani TN, Farhadian N, Binesh N. Preparation a core-shell lipid/polymer nanoparticle containing isotretinoin drug with pH sensitive property: a response surface methodology study. J Appl Polym Sci. 2021;138(30):50734. doi: 10.1002/app.50734.
  • Yeasmin S, Yeum JH, Yang SB. Fabrication and characterization of pullulan-based nanocomposites reinforced with montmorillonite and tempo cellulose nanofibril. Carbohydr Polym. 2020;240:116307. doi: 10.1016/j.carbpol.2020.116307.
  • Haghighatpanah N, Mirzaee H, Khodaiyan F, et al. Optimization and characterization of pullulan produced by a newly identified strain of Aureobasidium pullulans. Int J Biol Macromol. 2020;152:305–313. doi: 10.1016/j.ijbiomac.2020.02.226.
  • Singh RS, Kaur N, Pandey A, et al. Hyper-production of pullulan from de-oiled rice bran by Aureobasidium pullulans in a stirred tank reactor and its characterization. Bioresour Technol Rep. 2020;11:100494. doi: 10.1016/j.biteb.2020.100494.
  • Singh RS, Saini GK, Kennedy JF. Pullulan production in stirred tank reactor by a colour-variant strain of Aureobasidium pullulans FB-1. Carbohydr Polym Technol Appl. 2021;2:100086. doi: 10.1016/j.carpta.2021.100086.
  • Bhagath S, Vivek A, Krishna VV, et al. Synthesis and characteristics of MMT reinforced chitosan nanocomposite. Mater Today: Proc. 2021;46:4487–4492. doi: 10.1016/j.matpr.2020.09.685.
  • Jamshidifard S, Koushkbaghi S, Hosseini S, et al. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb (II), Cd (II) and Cr (VI) ions from aqueous solutions. J Hazard Mater. 2019;368:10–20. doi: 10.1016/j.jhazmat.2019.01.024.
  • Saeed K, Haider S, Oh T-J, et al. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J Membr Sci. 2008;322(2):400–405. doi: 10.1016/j.memsci.2008.05.062.
  • Rabbani MM, Yang SB, Park S-J, et al. Characterization of pullulan/chitosan oligosaccharide/montmorillonite nanofibers prepared by electrospinning technique. J Nanosci Nanotechnol. 2016;16(6):6486–6493. doi: 10.1166/jnn.2016.12121.
  • Rukmanikrishnan B, Lee J. Montmorillonite clay and quaternary ammonium silane-reinforced pullulan/agar-based nanocomposites and their properties for packaging applications. Int J Biol Macromol. 2021;191:956–963. doi: 10.1016/j.ijbiomac.2021.09.130.
  • Kumar M, Upadhyay S, Mishra P. Effect of Montmorillonite clay on pyrolysis of paper mill waste. Bioresour Technol. 2020;307:123161. doi: 10.1016/j.biortech.2020.123161.
  • Hussain MA, Abbas K, Lodhi BA, et al. Fabrication, characterization, thermal stability and nanoassemblies of novel pullulan-aspirin conjugates. Arab J Chem. 2017;10:S1597–S1603. doi: 10.1016/j.arabjc.2013.06.001.
  • Lewicki JP, Liggat JJ, Patel M. The thermal degradation behaviour of polydimethylsiloxane/montmorillonite nanocomposites. Polym Degrad Stab. 2009;94(9):1548–1557. doi: 10.1016/j.polymdegradstab.2009.04.030.
  • Guimarães CA, Menaa F, Menaa B, et al. Comparative physical–chemical characterization of encapsulated lipid-based isotretinoin products assessed by particle size distribution and thermal behavior analyses. Thermochim Acta. 2010;505(1-2):73–78. doi: 10.1016/j.tca.2010.04.001.
  • Paiva-Santos AC, Mascarenhas-Melo F, Coimbra SC, et al. Nanotechnology-based formulations toward the improved topical delivery of anti-acne active ingredients. Expert Opin Drug Deliv. 2021;18(10):1435–1454. doi: 10.1080/17425247.2021.1951218.
  • Wu DD, Qu C, Liu XQ, et al. A simple high‑performance liquid chromatography method for the assay of flavonoidsin Ginkgo biloba leaves. World J Tradit Chin Med. 2021;7(1):47–53. doi: 10.4103/wjtcm.wjtcm_9_21.