851
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phyto-synthesis of silver nanoparticles from Plumeria pudica leaf extract and its application in anti-cancerous activity

, , , , , , , , & show all
Article: 2267183 | Received 03 Apr 2023, Accepted 17 Sep 2023, Published online: 26 Oct 2023

References

  • Rudrappa M, Rudayni HA, Assiri RA, et al. Plumeria Alba-mediated green synthesis of silver nanoparticles exhibits antimicrobial effect and anti-oncogenic activity against glioblastoma U118 MG cancer cell line. Nanomaterials. 2022;12(3):1. doi:10.3390/nano12030493.
  • Dhumale VA, Gangwar RK, Pande N. Importance of gold nanoparticles for detection of toxic heavy metal ions and vital role in biomedical applications. Mater Res Innovations. 2021;25(6):354–10. doi: 10.1080/14328917.2020.1825770.
  • Gangwar RK, Dhumale VA, Gosavi SW, et al. Catalytic activity of allamanda mediated phytosynthesized anisotropic gold nanoparticles. Adv Nat Sci: Nanosci Nanotechnol. 2013;4(4):45005. doi:10.1088/2043-6262/4/4/045005.
  • Singla S, Jana A, Thakur R, et al. Green synthesis of silver nanoparticles using oxalis griffithii extract and assessing their antimicrobial activity. OpenNano. 2022;7:100047. doi:10.1016/j.onano.2022.100047.
  • Sakthi Athithan AS, Jeyasundari J, Jacob YBA. Biological synthesis, physico-chemical characterization of undoped and Co doped α-Fe2O3 nanoparticles using tribulus terrestris leaf extract and its antidiabetic, antimicrobial applications. Adv Nat Sci: Nanosci Nanotechnol. 2021;12(4):45003. doi: 10.1088/2043-6262/ac42c8.
  • Bharti A, Chae KH, Goyal N. Real-time synthesis and detection of plasmonic metal (Au, Ag) nanoparticles under monochromatic x-ray nano-tomography. Sci Rep. 2020;10(1):20877. doi: 10.1038/s41598-020-77853-x.
  • Wang D, Xue B, Wang L, et al. Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Sci Rep. 2021;11(1):10356. doi:10.1038/s41598-021-89854-5.
  • Miclăuş T, Beer C, Chevallier J, et al. Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nat Commun. 2016;7(1):11770. doi:10.1038/ncomms11770.
  • Ziai Y, Petronella F, Rinoldi C, et al. Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications. NPG Asia Mater. 2022;14(18):1–17. doi: 10.1038/s41427-022-00365-9.
  • Shanmuganathan R, Karuppusamy I, Saravanan M, et al. Synthesis of silver nanoparticles and their biomedical applications—A comprehensive review. Curr Pharm Des. 2019;25(24):2650–2660. doi:10.2174/1381612825666190708185506.
  • Yazhiniprabha M, Banu S, Ishwarya R, et al. Biomimetically synthesized physalis minima fruit extract-based zinc oxide nanoparticles as eco-friendly biomaterials for biological applications. J Drug Delivery Sci Technol. 2022;73:103475. doi:10.1016/j.jddst.2022.103475.
  • Imchen P, Ziekhrü M, Zhimomi BK, et al. Biosynthesis of silver nanoparticles using the extract of alpinia galanga rhizome and rhus semialata fruit and their antibacterial activity. Inorg Chem Commun. 2022;142:109599. doi:10.1016/j.inoche.2022.109599.
  • Nasir S, Walters KFA, Pereira RM, et al. Larvicidal activity of acetone extract and green synthesized silver nanoparticles from allium sativum L. (amaryllidaceae) against the dengue vector Aedes aegypti L. (diptera: culicidae). J Asia-Pac Entomol. 2022;25(3):101937. doi:10.1016/j.aspen.2022.101937.
  • Nizamuddin S, Hymavathi A, Yaku G, et al. Green synthesis and characterization of ZnO nanoparticles-A novel approach using carica papaya leaf extract. Mater Today: Proc. 2022;62:6854–6856. doi:10.1016/j.matpr.2022.05.053.
  • Kora AJ, Mounika J, Jagadeeshwar R. Rice leaf extract synthesized silver nanoparticles: an in vitro fungicidal evaluation against Rhizoctonia solani, the causative agent of sheath blight disease in rice. Fungal Biol. 2020;124(7):671–681. doi:10.1016/j.funbio.2020.03.012.
  • Gangwar RK, Dhumale VA, Kumari D, et al. Conjugation of curcumin with PVP capped gold nanoparticles for improving bioavailability. Mater Sci Eng, C. 2012;32(8):2659–2663. doi:10.1016/j.msec.2012.07.022.
  • Garibo D, Borbón-Nuñez HA, de León JND, et al. Green synthesis of silver nanoparticles using lysiloma acapulcensis exhibit high-antimicrobial activity. Sci Rep. 2020;10(1):12805. doi:10.1038/s41598-020-69606-7.
  • Vinay SP, Chandrasekhar N, Udaya B, Nagarju G, Chandrappa CP. Ixora coccinea extract-mediated green synthesis of silver nanoparticles: photodegradative and antimicrobial studies. IJBSBE. 2019;5(4):100–105., doi:10.15406/ijbsbe.2019.05.00161.
  • Mata R, Nakkala JR, Sadras SR. Catalytic and biological activities of green silver nanoparticles synthesized from plumeria Alba (frangipani) flower extract. Mater Sci Eng C Mater Biol Appl. 2015;51:216–225. doi:10.1016/j.msec.2015.02.053.
  • Jyoti K, Singh A, Fekete G, et al. Cytotoxic and radiosensitizing potential of silver nanoparticles against HepG-2 cells prepared by biosynthetic route using picrasma quassioides leaf extract. J Drug Delivery Sci Technol. 2020;55:101479. doi:10.1016/j.jddst.2019.101479.
  • Srikar SK, Giri DD, Pal DB, et al. Light induced green synthesis of silver nanoparticles using aqueous extract of prunus amygdalus. GSC. 2016;06(01):26–33. doi:10.4236/gsc.2016.61003.
  • Saleh HT, Mahdi ZF. Antibacterial activity of green synthesis of silver nanoparticles from withania somnifera (ashwagandha) root extract. MLU. 2021;21(2):625–631. doi:10.37506/mlu.v21i2.2752.
  • Kanwar R, Fatima R, Kanwar R, et al. Biological, physical and chemical synthesis of silver nanoparticles and their non-toxic bio-chemical application: a brief review. PAB. 2022;11(2):421–438. doi: 10.19045/bspab.2022.110042.
  • Molnár Z, Bódai V, Szakacs G, et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep. 2018;8(1):3943. doi:10.1038/s41598-018-22112-3.
  • Yadav J, Chauhan P. Green synthesis of silver nanoparticles using citrus X sinensis (orange) fruit extract and assessment of their catalytic reduction. Mater Today: Proc. 2022;62(10):6177–6181. doi:10.1016/j.matpr.2022.05.041.
  • Sameem S, Neupane NP, Ansari SMS, et al. Phyto-fabrication of silver nanoparticles from ziziphus mauritiana against hepatic carcinoma via modulation of rho family-alpha serine/threonine protein kinase. J Drug Delivery Sci Technol. 2022;70:103227. doi:10.1016/j.jddst.2022.103227.
  • Bhaskar S, Rai A, Ganesh KM, et al. Sericin-based bio-inspired nano-engineering of heterometallic AgAu nanocubes for attomolar mefenamic acid sensing in the mobile phone-based surface plasmon-coupled interface. Langmuir. 2022;38(39):12035–12049. doi:10.1021/acs.langmuir.2c01894.
  • Rai A, Bhaskar S, Ganesh KM, et al. Cellphone-based attomolar tyrosine sensing based on kollidon-mediated bimetallic nanorod in plasmon-coupled directional and polarized emission architecture. Mater Chem Phys. 2022;285:126129. doi: 10.1016/j.matchemphys.2022.126129.
  • Chamakuri SR, Suttee A, Mondal P. An eye-catching and comprehensive review on plumeria pudica jacq. (Bridal Bouquet), Plant Arch. 2020;20(2):2076–2079.
  • Suriyakala G, Sathiyaraj S, Gandhi AD, et al. Plumeria pudica jacq. flower extract—mediated silver nanoparticles: characterization and evaluation of biomedical applications. Inorg Chem Commun. 2021;126:108470. doi:10.1016/j.inoche.2021.108470.
  • Srivastava SK, Kulshreshtha A, Srivastava S, et al. Phytosynthesis of silver nanoparticles using plumeria pudica floral extract. Mater Today: Proc. 2022;62:4440–4444. doi:10.1016/j.matpr.2022.04.931.
  • Muniz FTL, Miranda MAR, Morilla dos Santos C, et al. The Scherrer equation and the dynamical theory of x-ray diffraction. Acta Crystallogr A Found Adv. 2016;72(Pt 3):385–390. doi:10.1107/S205327331600365X.
  • Bhaskar S, Srinivasan V, Ramamurthy SS. Nd2O3-Ag nanostructures for plasmonic biosensing, antimicrobial, and anticancer applications. ACS Appl. Nano Mater. 2023;6(2):1129–1145. doi:10.1021/acsanm.2c04643.