350
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of fuel-to-oxidizer ratio, potential of hydrogen and annealing temperature on the structural and optical properties of nanocrystalline MgO powders synthesized by the hydrothermal method

ORCID Icon
Article: 2276278 | Received 13 Sep 2023, Accepted 22 Oct 2023, Published online: 03 Nov 2023

References

  • Balakrishnan G, Velavan R, Batoo KM, et al. Microstructure, optical and photocatalytic properties of MgO nanoparticles. Res Phys. 2020;16:1. doi: 10.1016/j.rinp.2020.103013.
  • Kuekha R, Mubarak TH, Azhdar B, et al. Electromagnetic interference shielding and characterization of Ni2+ substituted cobalt nanoferrites prepared by Sol-Gel auto combustion method. Adv Mater Sci Eng. 2022;2022:1–20. doi: 10.1155/2022/3992402.
  • Devaraja PB, Avadhani DN, Prashantha SC, et al. Synthesis, structural and luminescence studies of magnesium oxide nanopowder. Spectrochim Acta A Mol Biomol Spectrosc. 2014;118:847–851. doi: 10.1016/j.saa.2013.08.050.
  • Hasan S, Azhdar B. Thermo-dielectric, humidito-dielectric, and humidity sensing properties of barium monoferrite and barium hexaferrite nanoparticles. Res Phys. 2022;42:105962. doi: 10.1016/j.rinp.2022.105962.
  • Hasan S, Azhdar B. Synthesis of nickel-zinc ferrite nanoparticles by the sol-gel auto-combustion method: study of crystal structural, cation distribution, and magnetic properties. Adv Condens Matter Phys. 2022;2022:1–14. doi: 10.1155/2022/4603855.
  • Chandekar KV, Shkir M, Khan A, et al. Significant and systematic impact of yttrium doping on physical properties of nickel oxide nanoparticles for optoelectronics applications. J Mater Res Technol. 2021;15:2584–2600. doi: 10.1016/j.jmrt.2021.09.072.
  • Fernandes M, Rb Singh K, Sarkar T, et al. Recent applications of magnesium oxide (MgO) nanoparticles in various domains. Adv Mater Lett. 2020;11(8):1–10. doi: 10.5185/amlett.2020.081543.
  • Rao KV, Sunandana C. Structure and microstructure of combustion synthesized MgO nanoparticles and nanocrystalline MgO thin films synthesized by solution growth route. J Mater Sci. 2008;43(1):146–154. doi: 10.1007/s10853-007-2131-7.
  • Rukh S, Sofi AH, Shah MA, et al. Antibacterial activity of magnesium oxide nanostructures prepared by hydrothermal method. Asian J Nanosci Mater. 2019;2:425–430.
  • Selvam NCS, Kumar RT, Kennedy LJ, et al. Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J Alloys Compd. 2011;509(41):9809–9815. doi: 10.1016/j.jallcom.2011.08.032.
  • Wahab R, Ansari S, Dar MA, et al. Synthesis of magnesium oxide nanoparticles by sol-gel process. MSF. 2007;558–559:983–986. doi: 10.4028/www.scientific.net/MSF.558-559.983.
  • Shukla S, Parashar G, Mishra A, et al. Nano-like magnesium oxide films and its significance in optical fiber humidity sensor. Sens Actuators B. 2004;98(1):5–11. doi: 10.1016/j.snb.2003.05.001.
  • Camtakan Z, Erenturk S, Yusan S. Magnesium oxide nanoparticles: preparation, characterization, and uranium sorption properties. Environ Prog Sustain Energy. 2012;31(4):536–543. doi: 10.1002/ep.10575.
  • Kumar A, Kumar J. On the synthesis and optical absorption studies of nano-size magnesium oxide powder. J Phys Chem Solids. 2008;69(11):2764–2772. doi: 10.1016/j.jpcs.2008.06.143.
  • Wayan Sutapa I, Wahid Wahab A, Taba P, et al. Synthesis and structural profile analysis of the MgO nanoparticles produced through the Sol-Gel method followed by annealing process. Orient J Chem. 2018;34(2):1016–1025. doi: 10.13005/ojc/340252.
  • Ningombam GS, Nongmaithem RS. Morphology and photoluminescence of self-assembled CaWO4: Sm3+ microspheres: effect of pH and surfactant concentration. Int Nano Lett. 2017;7(2):133–140. doi: 10.1007/s40089-017-0206-2.
  • Madani S, Mahmoudzadeh G, Khorrami SA. Influence of pH on the characteristics of cobalt ferrite powder prepared by a combination of sol-gel auto-combustion and ultrasonic irradiation techniques. J Ceram Process Res. 2012;13:123–126.
  • Lopez T, Garcia-Cruz I, Gomez R. Synthesis of magnesium oxide by the sol-gel method: effect of the pH on the surface hydroxylation. J Catal. 1991;127(1):75–85. doi: 10.1016/0021-9517(91)90210-U.
  • Sharma SK, Pitale SS, Malik MM, et al. Influence of fuel/oxidizer ratio on lattice parameters and morphology of combustion synthesized ZnO powders. Phys B. 2010;405(3):866–874. doi: 10.1016/j.physb.2009.10.005.
  • John Sushma N, Prathyusha D, Swathi G, et al. Facile approach to synthesize magnesium oxide nanoparticles by using clitoria ternatea—characterization and in vitro antioxidant studies. Appl Nanosci. 2016;6(3):437–444. doi: 10.1007/s13204-015-0455-1.
  • Kandiban M, Vigneshwaran P, Potheher IV. Synthesis and characterization of MgO nanoparticles for photocatalytic applications. Department of Physics, Bharathidasan Institute of Technology (BIT) Campus, Anna University, Tiruchirappalli, Tamilnadu, India; 2015.
  • Munusamy TD, Sarmin S, Ong HR, et al. Catalytic performance and antimicrobial activity of Mg(OH)2/MgO colloidal nanoparticles in alkyd resin nanocomposite derived from palm oil. Polym Bull. 2020;77(9):4571–4586. doi: 10.1007/s00289-019-02993-8.
  • Saeed Z, Azhdar B, Gan CL. Influence of high temperature on the crystal structure of SrFe12O19 nanoparticle. J Nanomater. 2022;2022:1–11. doi: 10.1155/2022/5467020.
  • Aziz C, Azhdar B. Synthesis of dysprosium doped cobalt ferrites nanoparticles by solgel auto-combustion method and influence of grinding techniques on structural, morphological, and magnetic properties. J Magn Magn Mater. 2022;542:168577. doi: 10.1016/j.jmmm.2021.168577.
  • Saeed Z, Azhdar B. A novel method for synthesizing narrow particle size distribution of holmium–doped strontium hexaferrite by sol-gel auto-combustion. Mater Res Express. 2020;7(4):045006. doi: 10.1088/2053-1591/ab7f5e.
  • Tahmasebi K, Paydar MH. The effect of starch addition on solution combustion synthesis of Al2O3–ZrO2 nanocomposite powder using urea as fuel. Mater Chem Phys. 2008;109(1):156–163. doi: 10.1016/j.matchemphys.2007.11.009.
  • Ehi-Eromosele CO, Ita BI, Iweala EEJ. Low-temperature combustion synthesis of cobalt magnesium ferrite magnetic nanoparticles: effects of fuel-to-oxidizer ratio and sintering temperature. J Sol-Gel Sci Technol. 2015;76(2):298–308. doi: 10.1007/s10971-015-3777-2.
  • Sijo AK, Lakshmi N, Venugopalan K, et al. Effect of fuel to oxidizer ratio on structural and magnetic properties of ZnCrFeO4 nanopowder. Adv Porous Mat. 2015;2(3):189–191. doi: 10.1166/apm.2014.1071.
  • Malligavathy M, Pathinettam Padiyan D. Role of pH in the hydrothermal synthesis of phase pure alpha Bi2O3 nanoparticles and its structural characterization. Adv Mater Proc. 2021;2(1):51–55. doi: 10.5185/amp.2017/112.
  • Zhang A, Zhang J, Cui N, et al. Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO4 photocatalyst. J Mol Catal A: Chem. 2009;304(1–2):28–32. doi: 10.1016/j.molcata.2009.01.019.
  • Bartonickova E, Cihlar J, Castkova K. Microwave-assisted synthesis of bismuth oxide. PAC. 2007;1(1–2):29–33. doi: 10.2298/PAC0702029B.
  • Zeid EFA, Ibrahem IA, Ali AM, et al. The effect of CdO content on the crystal structure, surface morphology, optical properties and photocatalytic efficiency of p-NiO/n-CdO nanocomposite. Res Phys. 2019;12:562–570. doi: 10.1016/j.rinp.2018.12.009.
  • Venkateswarlu K, Sandhyarani M, Nellaippan T, et al. Estimation of crystallite size, lattice strain and dislocation density of nanocrystalline carbonate substituted hydroxyapatite by X-ray peak variance analysis. Proc Mater Sci. 2014;5:212–221. doi: 10.1016/j.mspro.2014.07.260.
  • Begum A, Hussain A, Rahman A. Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films. Beilstein J Nanotechnol. 2012;3:438–443. doi: 10.3762/bjnano.3.50.
  • Balamurugan S, Ashna L, Parthiban P. Synthesis of nanocrystalline MgO particles by combustion followed by annealing method using hexamine as a fuel. J Nanotechnol. 2014;2014:1–6. doi: 10.1155/2014/841803.
  • Sackey J, Bashir A, Ameh A, et al. Date pits extracts assisted synthesis of magnesium oxides nanoparticles and its application towards the photocatalytic degradation of methylene blue. J King Saud Univer-Sci. 2020;32(6):2767–2776. doi: 10.1016/j.jksus.2020.06.013.
  • Ammulu MA, Vinay Viswanath K, Giduturi AK, et al. Phytoassisted synthesis of magnesium oxide nanoparticles from pterocarpus marsupium rox. b heartwood extract and its biomedical applications. J Genet Eng Biotechnol. 2021;19(1):21. doi: 10.1186/s43141-021-00119-0.
  • Ansari A, Ali A, Asif M, et al. Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines. New J. Chem. 2018;42(1):184–197. doi: 10.1039/C7NJ03742B.
  • Janet C, Viswanathan B, Viswanath R, et al. Characterization and photoluminescence properties of MgO microtubes synthesized from hydromagnesite flowers. J Phys Chem C. 2007;111(28):10267–10272. doi: 10.1021/jp072539q.
  • Trabelsi ABG, Chandekar KV, Alkallas FH, et al. A comprehensive study on Co-doped CdS nanostructured films fit for optoelectronic applications. J Mater Res Technol. 2022;21:3982–4001. doi: 10.1016/j.jmrt.2022.11.002.
  • Shkir M, Chandekar KV, Hossain MM, et al. Enhanced dielectric and electrical properties of PbS nanostructures facilely synthesized by low-cost chemical route: an effect of Ce doping concentrations. Mater Chem Phys. 2022;278:125626. doi: 10.1016/j.matchemphys.2021.125626.
  • Shkir M, Chandekar KV, Khan A, et al. Tailoring the structure-morphology-vibrational-optical-dielectric and electrical characteristics of Ce@ NiO NPs produced by facile combustion route for optoelectronics. Mater Sci Semicond Process. 2021;126:105647. doi: 10.1016/j.mssp.2020.105647.
  • Yadav RS, Kuřitka I, Vilcakova J, et al. Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J Phys Chem Solids. 2017;110:87–99. doi: 10.1016/j.jpcs.2017.05.029.
  • Goh E, Xu X, McCormick P. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr Mater. 2014;78–79:49–52. doi: 10.1016/j.scriptamat.2014.01.033.
  • Lv J, Gong W, Huang K, et al. Effect of annealing temperature on photocatalytic activity of ZnO thin films prepared by sol–gel method. Superlattices Microstruct. 2011;50(2):98–106. doi: 10.1016/j.spmi.2011.05.003.
  • Nemade K, Waghuley S. Synthesis of MgO nanoparticles by solvent mixed spray pyrolysis technique for optical investigation. Int J Met. 2014;2014:1–4. doi: 10.1155/2014/389416.
  • Badar N, Chayed NF, Roshidah R, et al. Band gap energies of magnesium oxide nanomaterials synthesized by the sol-gel method. AMR. 2012;545:157–160. doi: 10.4028/www.scientific.net/AMR.545.157.
  • Chayed NF, Kamarulzaman N, Badar N, et al. Effect of Cu doped in MgO on nanostructures and their band gap energies. SSP. 2019;290:323–328. doi: 10.4028/www.scientific.net/SSP.290.323.
  • Selvi KT, Mangai KA, Priya M, et al. Effect of solvent and annealed temperature on band gap energies of MgO nanoparticles. 2014 International Conference on Science Engineering and Management Research (ICSEMR); IEEE; 2014. p. 1–6. doi: 10.1109/ICSEMR.2014.7043584.
  • Almontasser A, Parveen A, Azam A. Synthesis, characterization and antibacterial activity of magnesium oxide (MgO) nanoparticles. IOP Conference Series: Materials Science and Engineering. IOP Publishing; 2019. p. 012051. doi: 10.1088/1757-899X/577/1/012051.
  • Thamilvanan D, Jeevanandam J, Hii YS, et al. Sol-gel coupled ultrasound synthesis of photo-activated magnesium oxide nanoparticles: optimization and antibacterial studies. Can J Chem Eng. 2021;99(2):502–518. doi: 10.1002/cjce.23861.
  • Bindhu M, Umadevi M, Micheal MK, et al. Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications. Mater Lett. 2016;166:19–22. doi: 10.1016/j.matlet.2015.12.020.
  • Krishnamoorthy K, Manivannan G, Kim SJ, et al. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanopart Res. 2012;14(9):1–10. doi: 10.1007/s11051-012-1063-6.