690
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bentonite-assisted construction of magnesium-silicate-based composite as efficient adsorbent for organic dye removal

, , , , , , & show all
Article: 2292230 | Received 20 Oct 2023, Accepted 30 Nov 2023, Published online: 25 Dec 2023

References

  • Han Y, Li H, Liu M, et al. Purification treatment of dyes wastewater with a novel micro-electrolysis reactor. Sep Purif Technol. 2016;170:1–16. doi: 10.1016/j.seppur.2016.06.058.
  • Issabayeva G, Hang SY, Wong MC, et al. A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Rev Chem Eng. 2018;34(6):855–873. doi: 10.1515/revce-2017-0007.
  • Malakootian M, Heidari MR. Removal of phenol from steel wastewater by combined electrocoagulation with photo-Fenton. Water Sci Technol. 2018;78(5–6):1260–1267. doi: 10.2166/wst.2018.376.
  • Vilar VJP, Moreira FC, Ferreira ACC, et al. Biodegradability enhancement of a pesticide-containing bio-treated wastewater using a solar photo-Fenton treatment step followed by a biological oxidation process. Water Res. 2012;46(15):4599–4613. doi: 10.1016/j.watres.2012.06.038.
  • Al-Tohamy R, Ali SS, Li F, et al. A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf. 2022;231:113160. doi: 10.1016/j.ecoenv.2021.113160.
  • Tkaczyk A, Mitrowska K, Posyniak A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci Total Environ. 2020;717:137222. doi: 10.1016/j.scitotenv.2020.137222.
  • Pandey S, Makhado E, Kim S, et al. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater—a review. Environ Res. 2023;217:114909. doi: 10.1016/j.envres.2022.114909.
  • Yang D, Cheng F, Chang L, et al. Sodium modification of low quality natural bentonite as enhanced lead ion adsorbent. Colloids Surf, A. 2022;651:129753. doi: 10.1016/j.colsurfa.2022.129753.
  • Abdel-Moniem SM, El-Liethy MA, Ibrahim HS, et al. Innovative green/non-toxic Bi2S3@g-C3N4 nanosheets for dark antimicrobial activity and photocatalytic depollution: turnover assessment. Ecotoxicol Environ Saf. 2021;226:112808. doi: 10.1016/j.ecoenv.2021.112808.
  • Li H, Xue S, Cao Y, et al. Photocatalytic reduction of Cr(VI) by WO3@PVP with elevated conduction band level and improved charge carrier separation property. Environ Sci Ecotechnol. 2020;3:100034. doi: 10.1016/j.ese.2020.100034.
  • Saruchi, Kumar V, Kaith BS, Jindal, R. Synthesis of hybrid ion exchanger for rhodamine B dye removal: equilibrium, kinetic and thermodynamic studies. Ind Eng Chem Res. 2016;55(39):10492–10499. doi: 10.1021/acs.iecr.6b01690.
  • Zhang F, Zhao Z, Tan R, et al. Selective and effective adsorption of methyl blue by barium phosphate nano-flake. J Colloid Interface Sci. 2012;386(1):277–284. doi: 10.1016/j.jcis.2012.07.034.
  • Palas B, Ersöz G, Atalay S. Bioinspired metal oxide particles as efficient wet air oxidation and photocatalytic oxidation catalysts for the degradation of acetaminophen in aqueous phase. Ecotoxicol Environ Saf. 2019;182:109367. doi: 10.1016/j.ecoenv.2019.109367.
  • Yadav KK, Kumar S, Pham QB, et al. Fluoride contamination, health problems and remediation methods in Asian groundwater: a comprehensive review. Ecotoxicol Environ Saf. 2019;182:109362. doi: 10.1016/j.ecoenv.2019.06.045.
  • Ali SS, Al-Tohamy R, Sun J. Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for azo dye decolorization and detoxification. Sci Total Environ. 2022;806(Pt 3):150665. doi: 10.1016/j.scitotenv.2021.150665.
  • Ali SS, Al-Tohamy R, Xie R, et al. Construction of a new lipase- and xylanase-producing oleaginous yeast consortium capable of reactive azo dye degradation and detoxification. Bioresour Technol. 2020;313:123631. doi: 10.1016/j.biortech.2020.123631.
  • Behera M, Nayak J, Banerjee S, et al. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: an integrated system design approach. J Environ Chem Eng. 2021;9(4):105277. doi: 10.1016/j.jece.2021.105277.
  • Dasgupta J, Singh M, Sikder J, et al. Response surface-optimized removal of reactive red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration. Ecotoxicol Environ Saf. 2015;121:271–278. doi: 10.1016/j.ecoenv.2014.12.041.
  • Samsami S, Mohamadizaniani M, Sarrafzadeh M-H, et al. Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process Saf Environ Prot. 2020;143:138–163. doi: 10.1016/j.psep.2020.05.034.
  • Zhang Z, Zhang H, Zhu L, et al. Hierarchical porous Ca(BO2)2 microspheres: hydrothermal–thermal conversion synthesis and their applications in heavy metal ions adsorption and solvent-free oxidation of benzyl alcohol. Chem Eng J. 2016;283:1273–1284. doi: 10.1016/j.cej.2015.08.073.
  • Zhang X, You H, Hou J, et al. Green and scalable narrow-gap exfoliation of high-quality two-dimensional vermiculite nanosheets as poly (vinyl chloride) thermal stabilizers. J Mater Res Technol. 2023;24:3804–3814. doi: 10.1016/j.jmrt.2023.04.002.
  • Lahori AH, Zhang Z, Shaheen SM, et al. Mono-and co-applications of Ca-bentonite with zeolite, Ca-hydroxide, and tobacco biochar affect phytoavailability and uptake of copper and lead in a gold mine-polluted soil. J Hazard Mater. 2019;374:401–411. doi: 10.1016/j.jhazmat.2019.04.057.
  • Wei T, Zhou Y, Sun C, et al. An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Res. 2023; doi: 10.1007/s12274-023-6187-8.
  • Yu H, Zhu Y, Xu J, et al. Fabrication porous adsorbents templated from modified sepiolite-stabilized aqueous foams for high-efficient removal of cationic dyes. Chemosphere. 2020;259:126949. doi: 10.1016/j.chemosphere.2020.126949.
  • Zhou S, Jin L, Gu P, et al. Novel calixarene-based porous organic polymers with superfast removal rate and ultrahigh adsorption capacity for selective separation of cationic dyes. Chem Eng J. 2022;433:134442. doi: 10.1016/j.cej.2021.134442.
  • Mahmoodi NM, Masrouri O, Arabi AM. Synthesis of porous adsorbent using microwave assisted combustion method and dye removal. J Alloys Compd. 2014;602:210–220. doi: 10.1016/j.jallcom.2014.02.155.
  • Yang D, Li Y, Zhao L, et al. Constructing ZIF-8-decorated montmorillonite composite with charge neutralization effect and pore structure optimization for enhanced Pb2+ capture from water. Chem Eng J. 2023;466:143014. doi: 10.1016/j.cej.2023.143014.
  • Guo M, Yang G, Zhang S, et al. Co-modification of bentonite by CTAB and silane and its performance in Oil-Based drilling mud. Clays Clay Miner. 2020;68(6):646–655. doi: 10.1007/s42860-020-00093-7.
  • Yaghmaeiyan N, Mirzaei M, Delghavi R. Montmorillonite clay: introduction and evaluation of its applications in different organic syntheses as catalyst: a review. Results Chem. 2022;4:100549. doi: 10.1016/j.rechem.2022.100549.
  • Ewis D, Ba-Abbad MM, Benamor A, et al. Adsorption of organic water pollutants by clays and clay minerals composites: a comprehensive review. Appl Clay Sci. 2022;229:106686. doi: 10.1016/j.clay.2022.106686.
  • Li Y, Yang D, Cheng F, et al. Regulating interlayer and surface properties of montmorillonite by dodecyl dimethyl betaine for enhanced lead ion capture. Surf Interfaces. 2023;42:103348. doi: 10.1016/j.surfin.2023.103348.
  • Fu L, Li J, Wang G, et al. Adsorption behavior of organic pollutants on microplastics. Ecotoxicol Environ Saf. 2021;217:112207. doi: 10.1016/j.ecoenv.2021.112207.
  • Cheng N, Wang B, Wu P, et al. Adsorption of emerging contaminants from water and wastewater by modified biochar: a review. Environ Pollut. 2021;273:116448. doi: 10.1016/j.envpol.2021.116448.
  • Qu J, Meng Q, Peng W, et al. Application of functionalized biochar for adsorption of organic pollutants from environmental media: synthesis strategies, removal mechanisms and outlook. J Cleaner Prod. 2023;423:138690. doi: 10.1016/j.jclepro.2023.138690.
  • Lan D, Zhu H, Zhang J, et al. Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: a review on species, mechanisms and perspectives. Chemosphere. 2022;293:133464. doi: 10.1016/j.chemosphere.2021.133464.
  • Sun P, Xu L, Li J, et al. Hydrothermal synthesis of mesoporous Mg3Si2O5(OH)4 microspheres as high-performance adsorbents for dye removal. Chem Eng J. 2018;334:377–388. doi: 10.1016/j.cej.2017.09.120.
  • Sun P, Xu L, Jiang X, et al. Facile and green one-pot hydrothermal formation of hierarchical porous magnesium silicate microspheres as excellent adsorbents for anionic organic dye removal. Ind Eng Chem Res. 2019;58(8):2945–2957. doi: 10.1021/acs.iecr.8b04841.
  • Jin Y, Liu Z, Han L, et al. Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions. J Hazard Mater. 2022;423:127027. doi: 10.1016/j.jhazmat.2021.127027.
  • Hegyesi N, Simon N, Pukánszky B. Silane modification of layered silicates and the mechanism of network formation from exfoliated layers. Appl Clay Sci. 2019;171:74–81. doi: 10.1016/j.clay.2019.01.023.
  • Cho E-B, Mandal M, Jaroniec M. Periodic mesoporous benzene − silicas prepared using boric acid as catalyst. Chem Mater. 2011;23(7):1971–1976. doi: 10.1021/cm200166f.
  • Ding S, Liu N, Li X, et al. Silica nanotubes and their assembly assisted by boric acid to hierarchical mesostructures. Langmuir. 2010;26(7):4572–4575. doi: 10.1021/la904851r.
  • Huang R, Wu M, Zhang T, et al. Template-free synthesis of large-pore-size porous magnesium silicate hierarchical nanostructures for high-Efficiency removal of heavy metal ions. ACS Sustainable Chem Eng. 2017;5(3):2774–2780. doi: 10.1021/acssuschemeng.7b00140.
  • Mahmoodi NM, Taghizadeh M, Taghizadeh A. Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems. J Mol Liq. 2018;269:217–228. doi: 10.1016/j.molliq.2018.07.108.
  • Wang W, Tian G, Zhang Z, et al. A simple hydrothermal approach to modify palygorskite for high-efficient adsorption of methylene blue and Cu(II) ions. Chem Eng J. 2015;265:228–238. doi: 10.1016/j.cej.2014.11.135.
  • İşçi S. Intercalation of vermiculite in presence of surfactants. Appl Clay Sci. 2017;146:7–13. doi: 10.1016/j.clay.2017.05.030.
  • Kaya-Özkiper K, Uzun A, Soyer-Uzun S. A novel alkali activated magnesium silicate as an effective and mechanically strong adsorbent for methylene blue removal. J Hazard Mater. 2022;424(Pt A):127256. doi: 10.1016/j.jhazmat.2021.127256.
  • Zhang J, Dang L, Zhang M, et al. Characterization of mesoporous magnesium silicate with hierarchical structure and its adsorption performance for dye and lead ion. Surf Interfaces. 2017;8:112–118. doi: 10.1016/j.surfin.2017.05.005.
  • Huang R, He L, Zhang T, et al. Fabrication and adsorption behavior of magnesium silicate hydrate nanoparticles towards methylene blue. Nanomaterials. 2018;8(5):271. doi: 10.3390/nano8050271.
  • Que A, Zhu T, Zheng Y. Highly efficient removal of methylene blue via hollow graphene-based magnesium silicate. J Mater Sci. 2021;56(29):16351–16361. doi: 10.1007/s10853-021-06299-x.
  • Zhao R, Li Y, Sun B, et al. Highly flexible magnesium silicate nanofibrous membranes for effective removal of methylene blue from aqueous solution. Chem Eng J. 2019;359:1603–1616. doi: 10.1016/j.cej.2018.11.011.
  • Gui C-X, Wang Q-Q, Hao S-M, et al. Sandwichlike magnesium silicate/reduced graphene oxide nanocomposite for enhanced Pb2+ and methylene blue adsorption. ACS Appl Mater Interfaces. 2014;6(16):14653–14659. doi: 10.1021/am503997e.
  • Sun Z, Srinivasakannan C, Liang J, et al. Preparation of hierarchical magnesium silicate with excellent adsorption capacity. Ceram Int. 2019;45(4):4590–4595. doi: 10.1016/j.ceramint.2018.11.146.
  • Wang Y, López-Valdivieso A, Zhang T, et al. Preparation of microscale zero-valent iron-fly ash-bentonite composite and evaluation of its adsorption performance of crystal violet and methylene blue dyes. Environ Sci Pollut Res Int. 2017;24(24):20050–20062. doi: 10.1007/s11356-017-9426-2.
  • De Castro MLFA, Abad MLB, Sumalinog DAG, et al. Adsorption of methylene blue dye and Cu(II) ions on EDTA-modified bentonite: isotherm, kinetic and thermodynamic studies. Sustainable Environ Res. 2018;28(5):197–205. doi: 10.1016/j.serj.2018.04.001.