203
Views
3
CrossRef citations to date
0
Altmetric
Review

The hunt for antimitotic agents: an overview of structure-based design strategies

, &
Pages 579-597 | Received 31 Dec 2015, Accepted 01 Apr 2016, Published online: 26 Apr 2016

References

  • Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253–265. doi:10.1038/nrc1317.
  • Chan KS, Koh CG, Li HY. Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis. 2012;3:e411.
  • Daire V, Pous C. Kinesins and protein kinases: key players in the regulation of microtubule dynamics and organization. Arch Biochem Biophys. 2011;510:83–92.
  • Cicenas J, Kalyan K, Sorokinas A. Highlights of the latest advances in research on CDK inhibitors. Cancers (Basel). 2014;6:2224–2242.
  • Matthews TP, Jones AM, Collins I. Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anti-cancer therapies. Expert Opin Drug Discov. 2013;8:621–640.
  • Gavriilidis P, Giakoustidis A, Giakoustidis D. Aurora kinases and potential medical applications of aurora kinase inhibitors: A review. J Clin Med Res. 2015;7:742–751.
  • Murugan RN, Park JE, Kim EH, et al. PLK1-targeted small molecule inhibitors: molecular basis for their potency and specificity. Mol Cells. 2011;32:209–200.
  • Kumar S, Kim J. PLK-1 Targeted inhibitors and their potential against tumorigenesis. BioMed Res Int. 2015;2015:705745.
  • Perez-Melero C. KSP inhibitors as antimitotic agents. Curr Top Med Chem. 2014;14:2286–2311.
  • Brown NR, Korolchuk S, Martin MP, et al. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Nat Commun. 2015;6:6769. doi:10.1038/ncomms7769.
  • Zhao Z, Wu H, Wang L, et al. Exploration of type II binding mode: a privileged approach for kinase inhibitor focused drug discovery? ACS Chem Biol. 2014;9:1230–1241.
  • Furet P, Zimmermann J, Capraro HG, et al. Structure-based design of potent CDK1 inhibitors derived from olomoucine. J Comput Aided Mol Des. 2000;14:403–409.
  • Kunick C, Zeng Z, Gussio R, et al. Structure-aided optimization of kinase inhibitors derived from alsterpaullone. Chembiochem. 2005;6:541–549.
  • Vassilev LT, Tovar C, Chen S, et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A. 2006;103:10660–10665.
  • Raffa D, Maggio B, Cascioferro S, et al. N-(indazolyl)benzamido derivatives as CDK1 inhibitors: design, synthesis, biological activity, and molecular docking studies. Arch Pharm (Weinheim). 2009;342:265–273.
  • Latham AM, Kankanala J, Fearnley GW, et al. In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis. PLoS One. 2014;9:e110997.
  • Chen P, Luo C, Deng Y, et al. The 1.7 A crystal structure of human cell cycle checkpoint kinase Chk1: implications for Chk1 regulation. Cell. 2000;100:681–692.
  • Oza V, Ashwell S, Almeida L, et al. Discovery of checkpoint kinase inhibitor (S)-5-(3-fluorophenyl)-N-(piperidin-3-yl)-3-ureidothiophene-2-carboxamide (AZD7762) by structure-based design and optimization of thiophenecarboxamide ureas. J Med Chem. 2012;55:5130–5142.
  • Oza V, Ashwell S, Brassil P, et al. Synthesis and evaluation of triazolones as checkpoint kinase 1 inhibitors. Bioorg Med Chem Lett. 2012;22:2330–2337.
  • Fraley ME, Steen JT, Brnardic EJ, et al. 3-(Indol-2-yl)indazoles as Chek1 kinase inhibitors: optimization of potency and selectivity via substitution at C6. Bioorg Med Chem Lett. 2006;16:6049–6053.
  • Tao ZF, Wang L, Stewart KD, et al. Structure-based design, synthesis, and biological evaluation of potent and selective macrocyclic checkpoint kinase 1 inhibitors. J Med Chem. 2007;50:1514–1527.
  • Matthews TP, Klair S, Burns S, et al. Identification of inhibitors of checkpoint kinase 1 through template screening. J Med Chem. 2009;52:4810–4819.
  • Matthews TP, McHardy T, Klair S, et al. Design and evaluation of 3,6-di(hetero)aryl imidazo[1,2- a]pyrazines as inhibitors of checkpoint and other kinases. Bioorg Med Chem Lett. 2010;20:4045–4049.
  • Reader JC, Matthews TP, Klair S, et al. Structure-guided evolution of potent and selective CHK1 inhibitors through scaffold morphing. J Med Chem. 2011;54:8328–8342.
  • Dwyer MP, Paruch K, Labroli M, et al. Discovery of pyrazolo[1,5-a]pyrimidine-based CHK1 inhibitors: a template-based approach–part 1. Bioorg Med Chem Lett. 2011;21:467–470.
  • Converso A, Hartingh T, Garbaccio RM, et al. Development of thioquinazolinones, allosteric Chk1 kinase inhibitors. Bioorg Med Chem Lett. 2009;19:1240–1244.
  • Massey AJ, Stokes S, Browne H, et al. Identification of novel, in vivo active Chk1 inhibitors utilizing structure guided drug design. Oncotarget. 2015;6:35797–35812.
  • Cai Z, Chehab NH, Pavletich NP. Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol Cell. 2009;35:818–829.
  • Arienti KL, Brunmark A, Axe FU, et al. Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J Med Chem. 2005;48:1873–1885.
  • Neff DK, Lee-Dutra A, Blevitt JM, et al. 2-Aryl benzimidazoles featuring alkyl-linked pendant alcohols and amines as inhibitors of checkpoint kinase Chk2. Bioorg Med Chem Lett. 2007;17:6467–6471.
  • Matijssen C, Silva-Santisteban MC, Westwood IM, et al. Benzimidazole inhibitors of the protein kinase Chk2: clarification of the binding mode by flexible side chain docking and protein-ligand crystallography. Bioorg Med Chem. 2012;20:6630–6639.
  • Lountos GT, Tropea JE, Zhang D, et al. Crystal structure of checkpoint kinase 2 in complex with NSC 109555, a potent and selective inhibitor. Protein Sci. 2009;18:92–100.
  • Lountos GT, Jobson AG, Tropea JE, et al. Structural characterization of inhibitor complexes with checkpoint kinase 2 (Chk2), a drug target for cancer therapy. J Struct Biol. 2011;176:292–301.
  • Caldwell JJ, Welsh EJ, Matijssen C, et al. Structure-based design of potent and selective 2-(quinazolin-2-yl) phenol inhibitors of checkpoint kinase 2. J Med Chem. 2011;54:580–590.
  • Hilton S, Naud S, Caldwell JJ, et al. Identification and characterisation of 2-aminopyridine inhibitors of checkpoint kinase 2. Bioorg Med Chem. 2010;18:707–718.
  • Larson G, Yan S, Chen H, et al. Identification of novel, selective and potent Chk2 inhibitors. Bioorg Med Chem Lett. 2007;17:172–175.
  • Silva-Santisteban MC, Westwood IM, Boxall K, et al. Fragment-based screening maps inhibitor interactions in the ATP-binding site of checkpoint kinase 2. PLoS One. 2013;8:e65689.
  • Mahadevan D, Bearss DJ, Vankayalapati H. Structure-based design of novel anti-cancer agents targeting aurora kinases. Curr Med Chem Anticancer Agents. 2003;3(1):25–34.
  • Bayliss R, Sardon T, Vernos I, et al. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell. 2003;12:851–62.
  • Elkins JM, Santaguida S, Musacchio A, et al. Crystal structure of human aurora B in complex with INCENP and VX-680. J Med Chem. 2012;55:7841–7848.
  • Warner SL, Bashyam S, Vankayalapati H, et al. Identification of a lead small-molecule inhibitor of the aurora kinases using a structure-assisted, fragment-based approach. Mol Cancer Ther. 2006;5:1764–1773.
  • Howard S, Berdini V, Boulstridge JA, et al. Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem. 2009;22:379–885.
  • Kim JT, Jung SH, Kang SY, et al. The discovery of aurora kinase inhibitor by multi-docking-based virtual screening. Int J Mol Sci. 2014;15:20403–20412.
  • Fu DH, Jiang W, Zheng JT, et al. Jadomycin B, an Aurora-B kinase inhibitor discovered through virtual screening. Mol Cancer Ther. 2008;7:2386–2393.
  • Coumar MS, Leou JS, Shukla P, et al. Structure-based drug design of novel Aurora kinase A inhibitors: structural basis for potency and specificity. J Med Chem. 2009;52:1050–1062.
  • Coumar MS, Chu CY, Lin CW, et al. Fast-forwarding hit to lead: aurora and epidermal growth factor receptor kinase inhibitor lead identification. J Med Chem. 2010;53:4980–4988.
  • Bouloc N, Large JM, Kosmopoulou M, et al. Structure-based design of imidazo[1,2-a]pyrazine derivatives as selective inhibitors of Aurora-A kinase in cells. Bioorg Med Chem Lett. 2010;20:5988–5993.
  • Bavetsias V, Faisal A, Crumpler S. Aurora isoform selectivity: design and synthesis of imidazo [4,5-b] pyridine derivatives as highly selective inhibitors of Aurora-A kinase in cells. J Med Chem. 2013;56:9122–9135.
  • Liu T, Zhan W, Wang Y, et al. Structure-based design, synthesis and biological evaluation of diphenylmethylamine derivatives as novel Akt1 inhibitors. Eur J Med Chem. 2014;73:167–176.
  • Kothe M, Kohls D, Low S, et al. Structure of the catalytic domain of human polo-like kinase 1. Biochemistry. 2007;46:5960–5971.
  • Kothe M, Kohls D, Low S, et al. Selectivity-determining residues in Plk1. Chem Biol Drug Des. 2007;70:540–546.
  • Cheng KY, Lowe ED, Sinclair J, et al. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. Embo J. 2003;22:5757–5768.
  • Sato Y, Onozaki Y, Sugimoto T, et al. Imidazopyridine derivatives as potent and selective Polo-like kinase (PLK) inhibitors. Bioorg Med Chem Lett. 2009;19:4673–4678.
  • Gilmartin AG, Bleam MR, Richter MC, et al. Distinct concentration-dependent effects of the polo-like kinase 1-specific inhibitor GSK461364A, including differential effect on apoptosis. Cancer Res. 2009;69:6969–6977.
  • Egert-Schmidt AM, Dreher J, Dunkel U, et al. Identification of 2-Anilino-9-methoxy-5,7-dihydro-6H-pyrimido[5,4-d][1]benzazepin-6-ones as Dual PLK1/VEGF-R2 kinase inhibitor chemotypes by structure-based lead generation. J Med Chem. 2010;53:2433–2442.
  • Nie Z, Feher V, Natala S, et al. Discovery of TAK-960: an orally available small molecule inhibitor of polo-like kinase 1 (PLK1). Bioorg Med Chem Lett. 2013;23:3662–3666.
  • Spankuch B, Keppner S, Lange L, et al. Drugs by numbers: reaction-driven de novo design of potent and selective anticancer leads. Angew Chem Int Ed Engl. 2013;52:4676–4681.
  • Elia AE, Cantley LC, Yaffe MB. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science. 2003;299:1228–1231.
  • Elia AE, Rellos P, Haire LF, et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the polo-box domain. Cell. 2003;115:83–95.
  • Yun SM, Moulaei T, Lim D, et al. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nat Struct Mol Biol. 2009;16:876–882.
  • Srinivasrao G, Park JE, Kim S, et al. Design and synthesis of a cell-Permeable, drug-like small molecule inhibitor targeting the polo-box domain of polo-like kinase 1. PLoS One. 2014;9:e107432.
  • Ahn M, Han YH, Park J, et al. A new class of peptidomimetics targeting the polo-box domain of polo-like kinase 1. J Med Chem. 2015;58:294–304.
  • Murugan RN, Ahn M, Lee WC, et al. Exploring the binding nature of pyrrolidine pocket-dependent interactions in the polo-box domain of polo-like kinase 1. PLoS One. 2013;8:e80043.
  • Liu F, Park JE, Qian WJ, et al. Identification of high affinity polo-like kinase 1 (Plk1) polo-box domain binding peptides using oxime-based diversification. ACS Chem Biol. 2012;7:805–810.
  • Sledz P, Stubbs CJ, Lang S, et al. From crystal packing to molecular recognition: prediction and discovery of a binding site on the surface of polo-like kinase. Angew Chem Int Ed Eng. 2011;50:4003–4006.
  • Tan YS, Sledz P, Lang S, et al. Using ligand-mapping simulations to design a ligand selectively targeting a cryptic surface pocket of polo-like kinase 1. Angew Chem Int Ed Engl. 2012;51:10078–10081.
  • Sakkiah S, Senese S, Yang Q, et al. Dynamic and multi-pharmacophore modeling for designing polo-box domain inhibitors. PLoS One. 2014;9:e101405.
  • Rellos P, Ivins FJ, Baxter JE, et al. Structure and regulation of the human Nek2 centrosomal kinase. J Biol Chem. 2007;282:6833–6842.
  • Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol. 2006;2:358–364.
  • Whelligan DK, Solanki S, Taylor D, et al. Aminopyrazine inhibitors binding to an unusual inactive conformation of the mitotic kinase Nek2: SAR and structural characterization. J Med Chem. 2010;53:7682–7698.
  • Solanki S, Innocenti P, Mas-Droux C, et al. Benzimidazole inhibitors induce a DFG-out conformation of never in mitosis gene A-related kinase 2 (Nek2) without binding to the back pocket and reveal a nonlinear structure–activity relationship. J Med Chem. 2011;54:1626–1639.
  • Innocenti P, Cheung KM, Solanki S, et al. Design of potent and selective hybrid inhibitors of the mitotic kinase Nek2: structure-activityrelationship, structural biology, and cellular activity. J Med Chem. 2012;55:3228–3241.
  • Henise JC, Taunton J. Irreversible Nek2 kinase inhibitors with cellular activity. J Med Chem. 2011;54:4133–4146.
  • Turner J, Anderson R, Guo J, et al. Crystal structure of the mitotic spindle kinesin Eg5 reveals a novel conformation of the neck-linker. J Biol Chem. 2001;276:25496–25502.
  • Maliga Z, Kapoor TM, Mitchison TJ. Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem Biol. 2002;9:989–996.
  • Kaan HY, Ulaganathan V, Rath O, et al. Structural basis for inhibition of Eg5 by dihydropyrimidines: stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol. J Med Chem. 2010;53:5676–5683.
  • Prokopcova H, Dallinger D, Uray G, et al. Structure–activity relationships and molecular docking of novel dihydropyrimidine-based mitotic Eg5 inhibitors. ChemMedChem. 2010;5:1760–1769.
  • Talapatra SK, Schüttelkopf AW, Kozielski F. The structure of the ternary Eg5-ADP-ispinesib complex. Acta Crystallogr D Biol Crystallogr. 2012;68:1311–1319.
  • Jiang C, Yang L, Wu WT, et al. De novo design, synthesis and biological evaluation of 1,4-dihydroquinolin-4-ones and 1,2,3,4-tetrahydroquinazolin-4-ones as potent kinesin spindle protein (KSP) inhibitors. Bioorg Med Chem. 2011;19:5612–5627.
  • Jiang C, Yang L, Wu WT, et al. CPUYJ039, a newly synthesized benzimidazole-based compound, is proved to be a novel inducer of apoptosis in HCT116 cells with potent KSP inhibitory activity. J Pharm Pharmacol. 2011;63:1462–1469.
  • Cox CD, Breslin MJ, Mariano BJ, et al. Kinesin spindle protein (KSP) inhibitors. Part 1: the discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorg Med Chem Lett. 2005;15:2041–2045.
  • Cox CD, Torrent M, Breslin MJ, et al. Kinesin spindle protein (KSP) inhibitors. Part 4:1 Structure-based design of 5-alkylamino-3,5-diaryl-4,5-dihydropyrazoles as potent, water-soluble inhibitors of the mitotic kinesin KSP. Bioorg Med Chem Lett. 2006;16:3175–3179.
  • Kaan HY, Ulaganathan V, Hackney DD, et al. An allosteric transition trapped in an intermediate state of a new kinesin-inhibitor complex. Biochem J. 2009;425:55–60.
  • Kaan HY, Weiss J, Menger D, et al. Structure–activity relationship and multidrug resistance study of new S-trityl-l-cysteine derivatives as inhibitors of Eg5. J Med Chem. 2011;54:1576–1586.
  • Wang F, Good JA, Rath O, et al. Triphenylbutanamines: kinesin spindle protein inhibitors with in vivo antitumor activity. J Med Chem. 2012;55:1511–1525.
  • Good JA, Wang F, Rath O, et al. Optimized S-Trityl-l-cysteine-based inhibitors of kinesin spindle protein with potent in vivo antitumor activity in lung cancer xenograft models. J Med Chem. 2013;56:1878–1893.
  • Ogo N, Ishikawa Y2, Sawada J, et al. Structure-guided design of novel l-cysteine derivatives as potent KSP inhibitors. CS Med Chem Lett. 2015;6:1004–1019.
  • Nagarajan S, Skoufias DA, Kozielski F, et al. Receptor ligand interaction-based virtual screening for novel Eg5/kinesin spindle protein inhibitor. J Med Chem. 2012;55:2561–2573.
  • Schiemann K, Finsinger D, Zenke F, et al. The discovery and optimization of hexahydro-2H-pyrano[3,2-c]quinolines (HHPQs) s potent and selective inhibitors of the mitotic kinesin-5. Bioorg Med Chem Lett. 2010;20:1491–1495.
  • Pinkerton AB, Lee TT, Hoffman TZ, et al. Synthesis and SAR of thiophene containing kinesin spindle protein (KSP) inhibitors. Bioorg Med Chem Lett. 2007;17:3562–3569.
  • Garcia-Saez I, Yen T, Wade RH, et al. Crystal structure of the motor domain of the human kinetochore protein CENP-E. J Mol Biol. 2004;340:1107–1116.
  • Qian X, McDonald A, Zhou HJ, et al. Discovery of the first potent and selective inhibitor of centromere-associated protein E: GSK923295. ACS Med Chem Lett. 2010;1:30–34.
  • Wood KW, Lad L, Luo L, et al. Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc Natl Acad Sci U S A. 2010;107:5839–5844.
  • Hirayama T, Okaniwa M, Imada T, et al. Synthetic studies of centromere-associated protein-E (CENP-E) inhibitors: 1. Exploration of fused bicyclic core scaffolds using electrostatic potential map. Bioorg Med Chem. 2013;21:5488–5502.
  • Hirayama T, Okaniwa M, Banno H, et al. Synthetic studies on centromere-associated protein-E (CENP-E) Inhibitors: 2. Application of electrostatic potential map (EPM) and structure-based modeling to Imidazo[1,2-a]pyridine derivatives as anti-tumor agents. J Med Chem. 2015;58:8036–8053.
  • Chu ML, Chavas LM, Douglas KT, et al. Crystal structure of the catalytic domain of the mitotic checkpoint kinase Mps1 in complex with SP600125. J Biol Chem. 2008;283:21495–21500.
  • Kusakabe K, Ide N, Daigo Y, et al. Indazole-based potent and cell-active Mps1 kinase inhibitors: rational design from pan-kinase inhibitor anthrapyrazolone (SP600125). J Med Chem. 2013;56:4343–4356.
  • Naud S, Westwood IM, Faisal A, et al. Structure-based design of orally bioavailable 1H-pyrrolo[3,2-c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1). J Med Chem. 2013;56:10045–10065.
  • Kusakabe K, Ide N, Daigo Y, et al. Discovery of imidazo[1,2-b]pyridazine derivatives: selective and orally available Mps1 (TTK) kinase inhibitors exhibiting remarkable antiproliferative activity. J Med Chem. 2015;58:1760–1775.
  • Chang L, Zhang Z, Yang J, et al. Atomic structure of the APC/C and its mechanism of protein ubiquitination. Nature. 2015;522:450–454. doi:10.1038/nature14471.
  • Sackton KL, Dimova N, Zeng X, et al. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature. 2014;514:646–649.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.